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Chapter 6
Long Noncoding RNAs in Mammalian 
Development and Diseases

Parna Saha, Shreekant Verma, Rashmi U. Pathak, and Rakesh K. Mishra

Abstract  Following analysis of sequenced genomes and transcriptome of many 
eukaryotes, it is evident that virtually all protein-coding genes have already been 
discovered. These advances have highlighted an intriguing paradox whereby the 
relative amount of protein-coding sequences remain constant but nonprotein-coding 
sequences increase consistently in parallel to increasing evolutionary complexity. It 
is established that differences between species map to nonprotein-coding regions of 
the genome that surprisingly is transcribed extensively. These transcripts regulate 
epigenetic processes and constitute an important layer of regulatory information 
essential for organismal development and play a causative role in diseases. The 
noncoding RNA-directed regulatory circuit controls complex characteristics. 
Sequence variations in noncoding RNAs influence evolution, quantitative traits, and 
disease susceptibility. This chapter presents an account on a class of such noncoding 
transcripts that are longer than 200 nucleotides (long noncoding RNA—lncRNA) in 
mammalian development and diseases.

Keywords  lncRNAs • Evolution of complexity • Epigenetic modifications  
• Imprinting • Chromosome inactivation • Body patterning • Nuclear architecture  
• Cellular differentiation

6.1  �Introduction

Recent technical advancements in high-throughput sequencing have revealed that a 
majority of eukaryotic genome is pervasively transcribed. Large-scale analysis 
(ENCODE project) has shown that ~75% of human genome is transcribed in various 
cell lines [1]. Why a cell spends so much of its resources on RNA production has 
captured the imagination of scientific community. Many of these RNAs are long 
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transcripts with no apparent protein-coding potential. Initially these transcripts were 
discounted as artifacts and were thought to be the result of expression “noise” rather 
than expression “choice.” But many features of these transcripts indicate a definite and 
important role. For example, transcription of lncRNAs is initiated from conserved 
promoters. Many of the transcripts are alternatively spliced and display predicted 
structures. They are dynamically expressed during differentiation and disease in a 
cell- and tissue-specific manner. However, the main argument posed against a func-
tional role is the lack of primary sequence conservation among these transcripts. But 
studies have shown that lack of conservation does not necessarily mean lack of 
function.

lncRNA molecules are involved in diverse biological processes like genomic 
imprinting, dosage compensation, epigenetic and transcriptional regulation, chromo-
some conformation, cell cycle regulation, stem cell differentiation/reprogramming, 
and allosteric enzymatic activity [2]. The structure and biogenesis of lncRNAs is 
very similar to that of mRNAs. Like mRNAs, they are transcribed by RNA poly-
merase II from genomic loci in the epigenetic context similar to protein-coding 
genes. They are 5′-capped and spliced and commonly have a polyadenylated tail. 
However, unlike mRNAs, they may undergo alternative forms of processing at 
3′-end. For example, an RNase P-assisted cleavage at 3′-end results in a lncRNA 
with stable 3′-terminal RNA triplex structure, instead of a polyadenylated tail [3]. 
Although lncRNAs lack coding capacity, they possess the intriguing ability to adopt 
a secondary/tertiary structure that may relate to their function. Depending on their 
position and direction of transcription in relation to protein-coding genes, lncRNAs 
may be classified as antisense, intergenic, intronic, bidirectional, processed, or pseu-
dogene transcripts [4, 5]. Mechanism of action of lncRNAs is also very diverse. They 
may regulate genes in cis (i.e., in close proximity to site of transcription) or in trans 
(at a distance from transcription site) [6]. They may act as scaffolds to bring a group 
of proteins into spatial proximity, as guides to recruit proteins to DNA, as decoys to 
titrate away proteins, or as enhancer RNAs involved in chromosomal looping in 
enhancer-like manner [2]. Some lncRNAs are precursor to smaller regulatory RNAs, 
like miRNA or piwi RNAs or they may bind to complimentary RNAs to affect their 
turnover [7].

Mostly the lncRNAs are expressed at low levels in a highly tissue-specific man-
ner, so much so that their expression profiles are important markers for disease or 
developmental state [8]. Many a times they are found next to protein-coding genes 
that are under tight transcriptional control, and often their expression pattern cor-
relates with tissue differentiation, development, and disease [9]. The widespread 
dysregulation of lncRNA expression in human diseases and the finding that many 
lncRNAs are enriched for SNPs that associate with human traits/diseases have high-
lighted the need to understand the functional contribution of these RNAs [10, 11]. 
However, the study of lncRNAs using model organisms is confounded by the fact 
that these RNAs exhibit poor primary sequence conservation. Exons of lncRNA 
evolve much faster than protein-coding gene sequence and most lncRNAs are lin-
eage specific [8, 12, 13].These RNAs rather show conservation along genomic 
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position (synteny), short sequence motifs, or secondary structure [14, 15]. Because 
of more likely structural than sequence conservation, functionality of lncRNAs 
could be organized into modular domains similar to proteins organized into func-
tional motifs.

Understandably organismal complexity correlates better with the expression rep-
ertoire of lncRNA than with that of protein-coding genes (Table  6.1) [16]. This 
presents a pressing need to explore the functional relevance of such transcripts in 
the context of evolution of developmental mechanisms. In most vertebrates, exhaus-
tive annotation of lncRNA is still not available, primarily due to incomplete genome 
sequences and partial annotation of protein-coding genes. Further, majority of the 
annotated lncRNAs remain functionally uncharacterized and only a small fraction 
have been explored for their biological relevance. In this chapter we give an over-
view of some of the characterized mammalian lncRNAs and their etiology in human 
diseases.

6.2  �Diverse Function of lncRNAs in Mammalian 
Gametogenesis and Development

A large number of mammalian lncRNAs (mostly in human and mice) have been 
discovered in recent genome-wide expression studies. They have been found to play 
important role in almost all stages of mammalian development, i.e., gametogenesis, 
embryogenesis (during preimplantation stages as well as in placenta), body axis 
patterning, pre-/postnatal tissue development, and organogenesis. In diploid organ-
isms, most genes are expressed from both alleles, but some are expressed from only 
one allele in a parent of origin-specific manner. Genomic imprinting and 
X-chromosome inactivation (XCI) are two such phenomena that lead to mono-
allelic expression of genes. These phenomena come into play during gametogene-
sis/embryonic development and have lncRNAs as a key player in the process. 
Similarly, spatiotemporally coordinated embryonic expression of Hox genes leads 
to body axis patterning in bilaterians. Epigenetic features and lncRNAs bring about 
this coordination of Hox gene expression. Several studies point to functional role of 
lncRNAs in mammalian development.

Table 6.1  Number of 
noncoding and coding 
transcripts in different 
organisms

Organism Genome size (Mb) lncRNAsa

Human 3300 141,353
Mouse 2800 117,405
D. melanogaster 120 54,819
A. thaliana 135 3853
C. elegans 100 3271
S. cerevisiae 12.5 61

awww.noncode.org
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6.2.1  �lncRNA in Genomic Imprinting

In mammals, some genes are epigenetically “imprinted” mainly by DNA methylation 
during gametogenesis by a process called “genomic imprinting.” This results in allele-
specific expression of either maternally or paternally inherited genes in developing 
embryo. The imprinting process happens during early gametogenesis and approxi-
mately 1% of mammalian protein-coding genes get imprinted. Initial cues to the phe-
nomenon came from early experiments where nuclear transfer in mouse zygotes 
reconstructed from two maternal pronuclei (gynogenones) or from two paternal pronu-
clei (androgenones) failed to develop, while zygotes carrying one paternal pronucleus 
and maternal pronucleus were able to develop [17, 18]. Later, genome-wide studies and 
deletion and transgenic approaches led to the identification of several imprinted genes 
most of which are essential and have been implicated in developmental process.

To date, more than 150 imprinted genes in mouse and about half that number has 
been identified in humans. Most imprinted genes are organized in clusters that con-
tain three or more genes. The size of the cluster spans from a few kilobases to several 
megabases on different chromosomes [19, 20] (www.mousebook.org). An imprinting 
control region (ICR) controls gene expression in each imprinted cluster. ICRs are rich 
in CpG dinucleotides and carry parental allele-specific germline-derived DNA-
methylated regions (gDMR). This pattern of gDMR is maintained throughout devel-
opment [21, 22]. The allele-specific expression of imprinted genes in a cluster in 
daughter cells after subsequent cell divisions is conferred and managed by histone 
modifications, insulators, and higher-order chromatin organizations [19, 20]. 
Surprisingly most imprinted clusters identified have one or more associated lncRNA 
that have been found to be inherently essential to the allele-specific expression. In 
general, lncRNAs show reciprocal parental allele-specific expression when compared 
to the imprinted genes in a cluster. ICRs are mostly located in or near the promoter of 
lncRNA. Further, by many overexpression and deletion experiments, it has been con-
firmed that lncRNA regulates imprinting of the locus in cis or in trans or both.

lncRNAs known to be involved in genomic imprinting are listed below (Table 6.2), 
and the mechanisms of action of two relatively better understood examples are dis-
cussed here. Although the imprinting-associated lncRNAs do not employ a common 
mechanism for epigenetic control, they do offer valuable insights into the biology of 
lncRNAs in general. Interestingly, most imprinted lncRNAs are relatively conserved 
at functional as well as sequence level between mice and humans. This makes 
genomic imprinting an attractive model system to study lncRNA-dependent epigen-
etic mechanisms during human development and diseases using mouse models.

6.2.1.1  �H19

H19 gene encodes for a 2.3-kb lncRNA. It is among one of the first discovered and 
widely investigated imprinted genes in mammals. In mouse, H19 is present along 
with insulin-like growth factor (Igf2) gene at distal segment of chromosome 7. This 

P. Saha et al.

http://www.mousebook.org


159

region is syntenic to the locus 11p15.5 in human [23, 35]. A differentially methyl-
ated ICR, which lies in between the two genes, regulates mutually exclusive mono-
allelic expression of H19 and Igf2 at the locus. A common enhancer located 
downstream of H19 drives the expression of both the genes. The ICR and H19 
promoter are methylated in paternal allele. On the maternal allele, the un-methylated 
ICR binds to an architectural known as CCCTC-binding factor (CTCF) responsible 
for long-range chromatin interactions and chromatin looping. CTCF further triggers 
recruitment of cohesin to ICR, resulting in higher-order chromatin conformation 
that restricts the enhancer access to Igf2 promoter. A methylated, thus unoccupied, 
ICR on the paternal chromosome on the other hand poses no restriction, and 
enhancer interacts with the Igf2 promoter driving its expression (Fig. 6.1a) [36, 37].

Although expression of H19 is mostly studied in relation to imprinting of H19–
Igf2 locus, studies have been carried out to understand the functions of H19 lncRNA. 
H19 knockout mice are viable and fertile with growth defects and reduced muscle 
regeneration capacities [35, 38]. For example, H19 deletion on the maternally inher-
ited chromosome led to an increase in Igf2 expression and increased body weight 
that could be rescued by deletion of one Igf2 allele. Although H19 is highly 
expressed during embryogenesis, it is effective only in specific cell lineages. Apart 
from imprinting, deletion/overexpression of H19 affects embryonic growth. This is 
because H19 is part of an imprinted gene network (IGN), which consists of 16 co-
expressing imprinted genes that include many growth regulators such as Igf2, Igf2r, 

Table 6.2  lncRNAs involved in mammalian genomic imprinting

Imprinted 
cluster

lncRNA and 
expression  
(M or P)

Type of 
lncRNA

Cis-silencing 
function

Genes imprinted and 
expression (M or P) Refs

Igf2 H19 (M) Intergenic Yes Igf2 (P) [23, 24]
Kcnq1 Kcnq1ot1 Antisense Yes Kcnq1, Cdkn1c, 

Slc22a18, Phlda2, 
Ascl2, Cd81, Tssc4, 
Tspan32, Osbpl5 (M)

[25]

Igf2r Airn(P) Antisense Yes Igf2r, Slc22a2, Slc22a3 
(M)

[26]

Pws/As UBE3A-ATS Antisense Yes MAGEL2 (P), NDN (P), 
SNRPN (P),

[27–29]

Ipw Intergenic n.d. SNORD115 (P),
Pwcr1 n.d. Yes SNORD116 (P), 

UBEA3A (M)
Dlk1 Gtl2 (M) Antisense n.d. DLK1 (P), DIO3 (P), 

RTL1(P)
[30–32]

Rtl1as (M) Antisense Yes
Rian (M) Intergenic n.d.
Mirg (M) Intergenic n.d.

Gnas Nespas Antisense Yes Gnas (M), Nesp (M) [33, 34]
Exon1A Antisense n.d.

M maternal, P paternal, n.d. not determined
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Fig. 6.1  Imprinted regulation of genes of Igf2 and Kcnq1 cluster by H19 and Kcnq1ot1 lncRNAs, 
respectively. (a) H19 and Igf2 show reciprocally exclusive mono-allelic expression from maternal 
and paternal loci, respectively. A differentially methylated ICR between the two genes and down-
stream enhancers regulates parent of origin-specific expression of both the genes. The ICR and 
H19 promoter are methylated in paternal chromosome that represses H19 expression, while 
enhancer interacts with the Igf2 promoter driving its expression. On the maternal chromosome, the 
ICR is un-methylated and CTCF is bound to it. CTCF triggers recruitment of cohesin to ICR and 
higher-order chromatin conformation that restricts the enhancer access to Igf2 promoter. H19 
lncRNA also involves in regulation of genes of imprinting gene networks (IGN). H19 lncRNA 
shows dual function of anti-myogenic and pro-myogenic during mesenchymal stem cells (C2C12) 
differentiation into myocytes. (b) At Kcnq1 cluster Kcnq1ot1 expresses paternally, while all the 
imprinted protein-coding genes are maternally expressed. These imprinted genes are of two 
types—(1) placenta-specific imprinted genes (PIGs: Ascl2, Cd81, Tssc4, Tspan32, Osbpl5) which 
show imprinted silencing only in placental tissues and (2) ubiquitously imprinted genes (UIGs: 
Kcnq1, Cdkn1c, Slc22a18, Phlda2) which show imprinted silencing in both placental and embry-
onic tissues. The promoter for the Kcnq1ot1 coincides with the differentially methylated ICR 
(Kcnq1 ICR/ KVDMR1). The maternal allele-specific methylation of Kcnq1ot1 promoter restricts 
the expression of lncRNA from maternal chromosome. Paternally expressed Kcnq1ot1 lncRNA 
interacts with modifiers of chromatin (EZH2 and G9a) and DNA (DNMT1) that bind paternal 
alleles in cis and silence the imprinted genes by establishing higher-order chromatin compartment 
enriched in repressive histone and DNA modifications
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and Cdkn1c. The noncoding RNA acts in trans to bring about its effect on IGN. It 
interacts with methyl-CpG-binding protein (MBD-1) that methylates the DMRs of 
IGN members like Igf2, Slc38a4, and Peg1 via H3K9 methyltransferase [39]. This 
function of H19 lncRNA that leads to establishment of H3K9me3-associated repres-
sive chromatin occurs on both the parental alleles and is related to embryonic growth 
regulation.

After embryogenesis, H19 expresses at low levels in all tissues and at a very high 
level in muscle. During postnatal tissue differentiation, H19 has been implicated in 
contrasting pro- and anti-myogenic functions. Using mouse multipotent mesenchy-
mal cells (C2C12 cells), it has been shown that depletion of H19 accelerates muscle 
differentiation suggesting an anti-myogenic function. Two different mechanisms 
have been suggested for this function. In one of the studies, H19 from human as 
well as mice is reported to carry conserved binding sites of Let-7 microRNAs, a 
pro-myogenic factor. It thus acts as a competing endogenous RNA (CeRNA), a 
natural sponge that sequesters Let-7 and controls its level. In another study, H19 has 
been shown to interact with an RNA processing protein known as K homology-type 
splicing regulatory protein (KSRP). The resulting RNA–protein complex facilitates 
interaction between exosome and labile transcripts of protein “myogenin” promot-
ing its degradation and eventually restricting the differentiation of C2C12 into myo-
cytes. However, in contrast to the above findings, a pro-myogenic function of H19 
has been reported that is mediated by two microRNAs, miR-675-3p and miR-
675-5p, originating from the exon1 of the H19 transcript. H19 along with miR-
675-3p/miR-675-5p induces C2C12 differentiation into myocytes. Downregulation 
of H19 or blocking the action of miR-675-3p/miR-675-5p prevents C2C12 differen-
tiation [40–42]. The apparently contrasting functions can be reconciled with possi-
ble mechanisms that inhibit the primary role of H19 which is to prevent myogenesis. 
Once its function needs to be changed, the RNA gets degraded or processed in a 
way that miRNAs from its exon1 are generated to eventually promote myogenesis.

In conclusion, H19 lncRNA is an epigenetic regulator of transcription. It exe-
cutes its activity by behaving as a CeRNA, miRNA precursor, or scaffold to recruit 
proteins. It is involved in multitude of biological processes like imprinting, growth, 
differentiation, and myogenesis [43].

6.2.1.2  �Kcnq1ot1

Kcnq1ot1 is a 91-kb-long noncoding RNA that maps to Kcnq1 gene in antisense 
orientation. The imprinted cluster approximately ~1 Mb in length and encompass-
ing 12 genes is present at the distal end of the seventh chromosome in mouse. Its 
human orthologue is located on chromosome 11p15.5 [25, 44]. Promoter for the 
Kcnq1ot1 gene lies in the tenth intron of Kcnq1 host gene and coincides with the 
differentially methylated ICR (Kcnq1 ICR/KVDMR1). The maternal allele-specific 
methylation of Kcnq1ot1 promoter restricts the expression of lncRNA from paternal 
chromosome in antisense direction with respect to host gene. All the imprinted 
protein-coding genes are maternally expressed. These imprinted genes are of two 
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types—(1) placenta-specific imprinted genes (PIGs: Ascl2, Cd81, Tssc4, Tspan32, 
Osbpl5) which show imprinted silencing only in placental tissues and (2) ubiqui-
tously imprinted genes (UIGs: Kcnq1, Cdkn1c, Slc22a18, Phlda2) which show 
imprinted silencing in both placental and embryonic tissues [25, 45, 46] (Fig. 6.1b).

The antisense Kcnq1ot1 RNA is required for silencing of both UIGs and PIGs. 
Paternal silencing is lost when Kcnq1ot1 promoter is deleted or a prematurely trun-
cated RNA is produced [47, 48]. Interestingly, Kcnq1ot1 also employs lineage-
specific mechanism of action as after initiating imprinting of UIGs as well as PIGs, 
it is involved in the maintenance of silencing at UIGs alone [49]. To unravel the 
mechanism of action of the lncRNA, biochemical and genetic studies have been car-
ried out in cells and transgenic mice models. The studies show that Kcnq1ot1 lncRNA 
interacts with modifiers of chromatin (EZH2 and G9a) and DNA (DNMT1) to recruit 
them in cis to silence the imprinted genes [44, 46, 50]. The allelic silencing is achieved 
by establishment of higher-order chromatin compartment enriched in repressive his-
tone modifications such as H3K27me3, H3K9me2, and H2AK119ub [50, 51]. While 
silencing of UIGs is controlled by repressive histone modifications and maintained 
by methylation of somatic DMRs, silencing of PIGs is controlled by repressive his-
tone modification only. Recently, Kcnq1ot1 lncRNA has been shown to mediate tar-
geting of the entire repressed loci to distinct perinucleolar repressive compartment by 
virtue of a conserved 890-bp repeat-containing domain present at its 5′-end.

6.2.2  �lncRNA in Dosage Compensation

In higher eukaryotes, the number of sex chromosomes differs between the two 
sexes. Organisms have evolved different strategies to compensate for this discrep-
ancy by adjusting gene expression levels. To equalize transcription level of genes 
present on sex chromosome, the chromatin structure is modulated epigenetically. 
The epigenetic mechanism on one extreme leads to inactivation of one of the X 
chromosome in females (as observed in mammals) and on the other extreme leads 
to twofold higher expression of genes on the single X chromosome in males (as 
observed in Drosophila). The curiously opposite ways lead to equal level of expres-
sion of sex chromosome-associated genes in different organisms.

In female mammals, the epigenetic process of X-chromosome inactivation (XCI) 
regulates gene dosage of extra X chromosome. Initially the phenomena was noticed 
by Murray Barr in 1949 when he observed that female cat cells possess a condensed 
subnuclear structure which is now called as “Barr body” in his honor. Later studies 
demonstrated that the Barr body is nothing but a condensed X chromosome which 
is also transcriptionally silent [52–54]. Later a 17-kb noncoding murine transcript 
Xist was discovered that initiated the fascinating era of lncRNA biology [55]. 
Further discovery of its 40-kb-long antisense transcript Tsix highlighted the fact that 
untranslated RNAs dominate the regulation of XCI [56]. The process of XCI is 
similar to genomic imprinting as the silenced genes are clustered, are influenced by 
a long-distance master control region, and are associated with multiple lncRNAs.
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In eutherian mammals, the process of XCI occurs in two different ways. During 
early embryogenesis, paternal X chromosome is inactivated in preimplanted 
embryos. As the embryo reaches blastula stage and gets implanted into the uterus, 
the outer blastular cells (future placenta) retain paternal XCI, while imprinting is 
erased from inner cell mass (future embryo). As these inner blastular cells (epi-
blasts) differentiate, either of the parental chromosome has an equal chance of inac-
tivation (random XCI). The eutherian mammalian female is thus essentially a 
mosaic, with randomly active paternal/maternal X chromosome. In marsupials, 
however, the choice of inactivation is always fixed to paternal X chromosome.

Random XCI is a coordinated stepwise process that results in silencing of ~1000 
genes along the inactive X chromosome. The process is controlled by X-inactivation 
center (Xic) that codes for lncRNA with regulatory properties. The lncRNAs from 
Xic work in cis as well as in trans. In the first step which has been referred to as 
“counting,” X chromosome-to-autosome ratio (X:A) is measured. XCI is initiated in 
female cells where X:A = 1 and is blocked in male cells where the ratio is 0.5 [57, 
58]. Molecular details of this measurement remain elusive, but trans-activity of the 
two lncRNAs, Tsix and Xite, is implicated in the process [59]. The next step results 
in random “choice” of one of the X chromosome to remain active (Xa) and the other 
one to get inactivated (Xi). The final “sensing” is a permissive state for XCI, similar 
to the initial counting step but distinct from it. Eventually the Xi is epigenetically 
marked by repressive chromatin and DNA methylation to a transcriptionally inert 
state, while Xa remains open for transcription.

The Xic is a 100–200-kb region with at least seven lncRNA genes of which six 
have been shown to have specific function during XCI (Table 6.3, Fig. 6.2). Prior to 
initiation of XCI, the lncRNAs Xist, Tsix, and Xite are expressed from both the Xs at 
low levels. Mutually exclusive selection of Xa and Xi necessitates interchromosomal 
interaction and robust feedback mechanism. The 5′-end of Tsix gene binds to the 

Table 6.3  lncRNAs involved in XCI

lncRNA Functions Refs

Xist Initiation and spreading of XCI on Xi [66]
Tsix Negative regulation of Xist, dosage sensor (measurement of X:A 

ratio), and X-chromosome pairing for choice of Xi/Xa
[59]

Xite Positive regulation of Tsix, dosage sensor (measurement of X:A 
ratio), and X-chromosome pairing for choice of Xi/Xa

[59, 67, 68]

DXPas34 Involve in dual function as an enhancer and a repressor of Tsix, 
counting, and X-chromosome pairing for choice of Xi/Xa

[69]

Tsx Negatively regulates Xist and positively regulates Tsix [70]
Linx Co-expresses with Tsix and potentially involved in positive 

regulation of Tsix
[71]

RepA Play role in upregulation of Xist by recruitment of PRC2 and 
altering the chromatin structure at Xist promoter on Xi

[72]

Jpx/Enox Activates Xist upregulation by evicting CTCF binding to Xist 
promoter on Xi

[72, 73]

Ftx Positive regulator of Xist [74]
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protein CTCF that leads to a brief transient contact of the two Xs at Xic. However, a 
role for the two lncRNA transcripts (Tsix/Xite) is also envisaged in the process as 
inhibiting Pol II activity results in abrogation of X–X pairing suggesting that the pair-
ing requires new transcription. The contact of the two Xs results in establishment of 
an asymmetry and choice of Xi and Xa [60, 61]. The process of establishment of 
asymmetry is not clear, but it has been postulated that the proximity of Xs directs 
irreversible shift of proteins (Oct4 and CTCF) from one allele (future Xi) to the other 
(future Xa) [61–63]. Once chosen, Tsix is expressed in an allele-specific manner from 
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the Xa. As Tsix is antisense to Xist, its expression results in removal of latter from Xa 
in cis. lncRNAs Xite and DXPas34 positively regulate expression of Tsix from Xa. 
Finally to seal the active state permanently, Tsix lncRNA directs DNA methylation 
(by Dnmt3a) at the Xist promoter resulting in stable silencing of Xist allele on Xa. On 
the other hand, removal of transcription factors (Oct4 and CTCF) from Tsix/Xite 
promoter on Xi causes a drop in transcription of these lncRNAs. In the absence of 
Tsix, Xist lncRNA being transcribed from Xi becomes abundant and coats it in cis. 
Xist-coated Xi becomes enriched for repressive chromatin marks (H3K27me3), but 
Xist transcription continues unabated in otherwise heterochromatic environment. 
One of the first changes that follows depletion of Tsix on Xi is enrichment of poly-
comb repressive complex (PRC2) on Xist promoter. This is brought about by RepA 
lncRNA that recruits PRC2 to 5′-end of Xist. This creates a heterochromatic patch at 
Xist promoter, essential and stimulatory for its expression [64, 65].

In conclusion, the lncRNAs coded by the Xic perform versatile functions to coor-
dinate the process of XCI. They can uniquely define an address in the genome as 
they remain tethered to their locus of transcription and guide regulatory mecha-
nisms in cis. They can also function as transcript-level regulator by RNAi (Xist–Tsix 
pair) or act as tethers and guides to recruit chromatin modifiers (RepA recruitment 
of PRC2, Xist recruitment of Dnmt3a).

6.2.3  �Linc-ing RNAs to Body Patterning

Hox genes are the important group of transcriptional factors encoding genes, 
arranged in clusters in the bilaterian genomes. They define the body axis patterning 
through precisely coordinated spatiotemporal expression in the developing 

Fig. 6.2  lncRNA-mediated X-chromosome inactivation. (a) X-inactivation center (Xic) of mouse 
encompasses ~500 kb regions of X chromosome that has several lncRNA loci (Xist, Tsix, Jpx, Ftx, 
RepA, Xite, Tsx, Linx) as well as protein-coding genes (gray). lncRNAs are involved in positive 
(RepA, Jpx, and Ftx—green) or negative (Xite, Tsx, Linx—blue) regulation of Xist by activating 
Tsix, an antisense lncRNA and negative regulator of Xist. Other than lncRNA at the Xic, the 
protein-coding Rnf12 gene (green) which encodes an ubiquitin ligase is also known to promote 
Xist upregulation. Pluripotency factors (Oct4, Sox2, Nanog, C-Myc, Klf4, and Rex1) are thought 
to block Xist expression directly or indirectly through Tsix activation. During early embryogenesis 
before implantation, both the X chromosomes are active, and both express the Tsix lncRNA, which 
negatively regulates the Xist lncRNA. (b) At the onset of XCI during development or ESC differ-
entiation, several events such as decrease in pluripotency factor levels (OCT2, NANOG, SOX2, 
and REX1), chromosome pairing (involves pairing region), increase in Xist activator expression 
(jpx, Ftx, and RepA), and induction of mono-allelic expression of Tsix facilitate coordinated induc-
tion of Xist upregulation at XIC of random chosen future Xi chromosome from one of the two X 
chromosomes. At the Xic of the second X chromosome (Xa), Tsix expression is maintained and 
proposed to be regulated by its cis activator lncRNAs (DXPas34, Tsx, xite, Linx) which restrict Xist 
expression from Xa. (c) Upregulation of Xist initiates XIC by coating Xi chromosome in cis at Xic 
that spread to all over the Xi chromosome. Xist coating to the entire chromosome is accompanied 
by recruitments of DNA and histone modifiers which direct the series of epigenetic modification 
that progressively silence most of the X-linked genes
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embryo—a hallmark of Hox genes. While invertebrates have one set of Hox genes, 
vertebrates typically have four sets referred to as HoxA, HoxB, HoxC, and HoxD 
clusters due to the events of genome duplication during the course of evolution [75]. 
More recently many kinds of regulatory RNAs that are involved in Hox gene regula-
tion have been discovered. Large body of work in the last decade has discovered and 
studied the noncoding RNAs in the Hox clusters, and most of them have been found 
to be long intergenic noncoding (linc)RNAs. The expression of these intergenic tran-
scripts correlates with transcription of neighboring Hox genes. Very often these lin-
cRNAs show syntenic or positional conservation between mouse and humans 
suggesting a common function. Here we discuss the current understanding of the 
role and mechanism of action of some these lincRNAs in different mammalian Hox 
clusters. Table 6.4 enlists various lincRNAs involved in regulation of mammalian 
Hox genes.

Table 6.4  lncRNAs involved in regulation of mammalian Hox genes

lncRNA Expressed in Transcribed from Function Refs

HoxA
Halr1 and 
Halr1-os

Human, mouse 
ESCs

Region between 
Hoxa1 and Skap2, 
~50 kb from the 3′ 
end of Hoxa1

Retinoic acid-dependent 
regulation of HoxA 
genes

[76, 77]

Haunt (HoxA 
upstream 
noncoding 
transcript)

Human ESC, 
NPC, and NSC

40 kb upstream of 
HoxA cluster

Attenuates enhancer–
promoter contacts acting 
as RA-dependent brake 
during ESC 
differentiation

[78]

HOTAIRM1  
(Hox antisense 
intergenic RNA 
myeloid 1)

Human, 
mouse, and 
other 
mammals

Transcribed 
antisense to Hoxa1 
from a shared 
promoter between 
Hoxa1 and Hoxa2

Specific to myeloid 
lineage and involved in 
granulocyte maturation

[79, 80]

HOXA-AS2 
(HoxA cluster 
antisense RNA 2)

Promyelocytic 
leukemic cells 
and 
neutrophils

Isoforms of 339 to 
2045 nucleotides 
from intergenic 
region between 
Hoxa3 and Hoxa4

Induced by IFNγ in 
PMNs and TNF in NB4 
cells for negative 
regulation of ATRA-
induced TRAIL 
(TNF-related apoptosis-
inducing ligand) during 
myeloid differentiation

[81]

HOXA11-AS Human and 
mouse

Antisense 
transcript from 
promoter of 
Hoxa11

In gametogenesis. 
Knockdown results in 
male and female sterility 
due to uterine defects 
and failure of testes to 
descend from abdomen, 
respectively

[82]

(continued)
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6.2.3.1  �HoxA Cluster

Heater is one of the well-studied lncRNA loci in HoxA cluster. The coding poten-
tial of this region was discovered during analysis of RNA deep sequencing data in 
mouse ES cells (ESCs) [76]. Heater region encodes for two lincRNAs—halr1(linc-
Hoxa1) and halr1os1. Studies on the linc-Hoxa1 (transcribed in opposite direction 
to Hoxa1 and is 12 kb long) in mouse ESCs revealed that the linc-Hoxa1 has three 
isoforms of which the isoform 1 is most abundant. Hoxa1 and linc-Hoxa1 are sensi-
tive to retinoic acid (RA) and single transcript counting showed that their levels are 
antagonistic to each other. Indeed knockdown of linc-Hoxa1 increased the level of 
Hoxa1 mRNA, but the result was not reproduced when siRNA was used. To solve 
this mystery, the investigators checked for the levels of linc-Hoxa1 in the nucleus 
and cytoplasm using RNA FISH under both experimental conditions. The number 
of sites of active transcription of linc-Hoxa1 decreased by the use of antisense 

Table 6.4  (continued)

lncRNA Expressed in Transcribed from Function Refs

HIT18844 Human 
abdominal 
tissues like the 
colon, uterus, 
and prostate

265 bp from 5′-end 
of HOXA cluster, 
~1.8 kb from 
Hoxa13

Possess ultra-conserved 
short stretch that results 
in secondary structural 
motif. Function 
unknown

[83]

HOTTIP (HoxA 
transcript at the 
distal tip)

Human and 
mouse

3.7-kb 
polyadenylated 
transcript starting 
~330b upstream of 
Hoxa13

Spatiotemporally 
controls expression  
of 5′ HoxA genes

[84]

HoxB
Hobbit1 (HoxB 
intergenic 
transcript)

Human and 
mouse

Intergenic region 
between Hoxb4 
and Hoxb5

Retinoic acid-dependent 
regulation of HoxB 
genes

[85, 86]

HoxC
HOTAIR (Hox 
transcript 
antisense 
intergenic RNA)

Human 2158-bp, 
polyadenylated 
transcript from 
intergenic region 
between Hoxc11 
and Hoxc12

Regulates expression of 
HoxD genes by acting 
as a molecular scaffold 
for binding of LSD1/
CoREST/REST 
complex

[87–89]

HoxD
Hotdog and Tog 
(transcript from 
telomeric desert 
of HoxD cluster 
and twin of 
Hotdog)

Mouse Telomeric region 
downstream of 
HoxD cluster

Specific to development 
cecum, regulation of 
HoxD genes

[90]

HOXD-AS1 Human Intergenic between 
Hoxd1 and Hoxd3

Retinoic acid-induced 
cell differentiation

[91]
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oligonucleotides but not siRNAs, indicating the repression of Hoxa1 by linc-Hoxa1 
occurs only at the site of its transcription (not by overall cellular abundance) and 
requires the proximity of these two genes in cis (neighboring Hoxa2 levels were 
unaffected). Another interesting observation was that only when linc-Hoxa1 is <10 
molecules Hoxa1 transcripts are detectable highlighting the subtlety of transcrip-
tional regulation by these RNAs. In summary, in the absence of RA, Hoxa1 adopts 
a conformation that is physically proximal to linc-Hoxa1. Such conformation results 
in repression ofHoxa1 transcription by abrogating the binding of RA receptors to 
retinoic acid response elements (RAREs). When RA is present, it binds to RAREs 
in the Hoxa1 promoter and pulls it out from the regulation of linc-Hoxa1. This 
finely orchestrated regulation also requires the presence of protein factor purine-
rich element-binding protein B (PURB) that binds to linc-Hoxa1 as shown in 
Fig. 6.3a [77]. Thus the Heater region through its multiple RAREs regulates the 
effect of retinoids on the noncoding transcripts that in turn fine-tunes neighboring 
Hox gene expression.

Another noncoding transcript known as HOTAIRM1 was identified in HoxA 
cluster in human peripheral blood neutrophils of myeloid lineage, hence the name 
[79]. HOTAIRM1 is not conserved across species in terms of sequence, but similarly 
localizing transcripts are present in other species. HOTAIRM1 preferentially 
associates with CpG islands near the TSS(s) in all mammalian species. Knockdown 
of transcript results in lowering of expression of Hoxa1, Hoxa4, and subtly Hoxa5, 
but not Hoxa9, Hoxa10, and Hoxa11 (cis effect). HOTAIRM1 knockdown in all-
trans retinoic acid (ATRA)-induced human promyelocytic leukemic cells (NB4) 
also showed trans effect by abrogating G/S cell cycle progression by interfering 
with CD11b, CD18, and β2 integrin signaling pathways that are involved in granu-
locyte maturation [80].

The discovery of HOTTIP was spurred by the observation that 5′-end of the 
HoxA cluster in anatomically distal cells (foreskin and foot fibroblast) shows 
broad H3K4me3 peaks and abundant chromatin interactions in contrary to the 
H3K27me3 marks and no long-range interactions in proximal cells (lung fibro-
blast). HOTTIP has the presence of bivalent histone marks (H3K4me3 and 
H3K27me3) indicating its poised regulatory function at the diametrically opposite 
chromatin domain at 5′-end of HoxA cluster as compared to 3′-end. Knockdown 
of HOTTIP reduced the level of transcripts from distal genes Hoxa13, Hoxa11, 
and in lesser severity for more proximal genes Hoxa10–Hoxa7. Depletion of 
HOTTIP in distal limb bud of chicken embryos resulted in bending and shortening 
of distal bony elements. There was an increase in H3K27me3 and overall decrease 
in H3K4me3 marks over the 5′-end of HoxA cluster. These observations indicate 
that HOTTIP promotes transcription of 5′ HOXA genes in cis, in a proximity-
dependent fashion in distal tissues through the deposition of H3K4me3 marks. 
HOTTIP acts as a regulatory switch at the distal end of HoxA cluster by interact-
ing with WDR5 to recruit MLL complex that activates 5′HOXA genes. HOTTIP is 
an elegant example of how noncoding transcript couples 3D genome organization 
with chromatin landscape to spatiotemporally coordinate the developmental pat-
tern [84] Fig. 6.3b.
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Fig. 6.3  Schematic showing the mechanism of action of Hox lincRNAs. (a) Heater region encodes 
two lncRNAs halr1 and halr1-os. In the absence of retinoic acid, halr1/halr1-os binds to PURB and 
transcriptionally represses Hoxa1. When retinoic acid is present, it binds to RAREs (retinoic acid 
response elements) upstream of Hoxa1 and prevents halr1 from repressing Hoxa1 expression. (b) 
HOTTIP is a regulatory RNA at the distal end of HoxA cluster that interacts with WDR5 to recruit 
MLL complex proteins to activate 5′ Hoxa genes. (c) Hobbit1 regulates the expression of Hoxb 
genes in the presence of retinoic acid that acts on RAREs present in the regulatory regions. (d) 
HOTAIR is transcribed from HoxC cluster and regulates the expression of Hoxd genes by acting as 
a dual molecular scaffold that recruits PRC2 and LSD1/REST/coREST complexes at posterior 
Hoxd genes. (e) Hotdog and twin of hotdog, transcribed from the telomeric desert downstream of 
HoxD cluster, fold the Hoxd3–Hoxd11 and the enhancers (blue circles) into an active TAD to regu-
late the long-range interactions necessary for proper gene expression during cecum development
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6.2.3.2  �HoxB Cluster

Hobbit1, the only prominent lncRNA from HoxB cluster, is a noncoding transcript 
that activates gene expression following RA induction. Figure 6.3c shows early neu-
ral enhancer (ENE) and distal element-retinoic acid response element (DE-RARE) 
enhancer modulate the expression of Hoxb genes in neural crest during rostral 
expansion maintaining the distinct domains of anterior and posterior Hoxb genes 
[85]. DE-RARE can modulate RA response of Hobbit1 and anteriorize the 5′ Hoxb 
gene expression. This exemplifies the cross talk of cis regulatory DE-RARE with 
noncoding RNA Hobbit1 and subsequently the neighboring Hoxb genes in response 
to the developmental cues (RA gradient) during organogenesis [86].

6.2.3.3  �HoxC Cluster

HOTAIR is the most widely studied lncRNAs from Hox clusters (HoxC cluster). It 
was discovered in a microarray study of human Hox loci in primary fibroblast with 11 
different positional identities. Knockdown of HOTAIR had no effect on HoxC cluster 
genes on Chr12 but severely affected HoxD cluster genes spanning 40 kb on Chr2. 
This was a remarkable example of noncoding transcripts acting in trans [87]. 
Chromatin immunoprecipitation studies revealed that depletion of HOTAIR lowered 
the levels of H3K27me3 and Suz12 over the HoxD cluster. Later studies showed that 
HOTAIR interacts with Ezh2 (T345) and thus recruits the PRC2 complex at the HoxD 
[92]. Not only this, HOTAIR also acts a dual molecular scaffold, as its 5′-end binds 
PRC2 complex, while the 3′-end binds LSD1/CoREST/REST complex. Thus it teth-
ers the two complexes to coordinate H3K27 methylation (deposition of repressive 
marks) and H3K4 demethylation (removal of activation marks) as depicted in 
Fig. 6.3d [88].

Schoroderet and colleagues deleted the mouse Hotair region along with the 
HoxC cluster with surprisingly no discernable in vivo effects concluding that the 
long noncoding RNAs have evolved to perform species-specific function [89]. 
However, in an equally surprising report that followed this study, Li et al. showed 
that precise Hotair conditional knockout results in homeotic transformation of spine 
and metacarpal carpal bones. Interestingly depletion of Hotair also affects many 
other non-Hox genes including those from imprinted loci like Dlk1-Meg3 and 
Igf2-H19 [93]. Reanalysis of Schoroderet results indicated that HoxCΔ resulted in 
upregulation of all other Hox genes and removed genes that function antagonistic to 
Hotair leading to compensation of the deletion. The drastic difference in results of 
HoxCΔ knockout and Hotair knockdown on using different experimental approaches 
highlights the need of fine-scale experimentation to study intricate regulation of 
Hox lincRNAs.

HOTAIR mis-expression has also been implicated in many cancers [94–100] as it 
has been reported to have multiple protein partners like proteins involved in cyto-
skeletal and respiratory chain function [101].
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6.2.3.4  �HoxD Cluster

In HoxD cluster, Hotdog and Tog (Hotdog, lncRNA from telomeric desert of HoxD 
cluster; Tog, twin of Hotdog in opposite direction) are the noncoding transcripts 
specific to developing cecum. They arise from the telomeric region downstream of 
HoxD cluster. In cecum, Hoxd9, Hoxd10, and Hoxd11 are highly expressed, while 
Hoxd12 and Hoxd13 are repressed. These two lncRNAs were discovered while try-
ing to understand how closely spaced genes in HoxD cluster maintain a distinct 
chromatin/expression domain. Chromosome conformation capture and chromatin 
immunoprecipitation studies within the HoxD cluster showed that Hotdog and Tog 
fold the expressed Hox genes along with their enhancers and the telomeric desert in 
an active topological domain (H3K4me1/3 marked) as in Fig.  6.3e. The domain 
allows their precise expression during cecum budding. The repressed Hox genes 
remain out of the active domain. When the telomeric gene desert was separated 
from the HoxD cluster by chromosome inversion, the HoxD cluster genes were 
silenced, but the noncoding transcripts were still produced. Deletion of region from 
Hoxd9 to Hoxd11 abrogates this spatial configuration and abolishes Hotdog/Tog 
transcription as well. These results suggest a model of long-range enhancer sharing, 
and Hotdog/Tog are the example of how noncoding transcripts coordinate long-
range interactions connecting distal regulatory elements [90].

6.2.4  �lncRNA in Tissue Development and Organogenesis

Embryonic stem cells make cell-fate choices by gene regulatory programs. Terminal 
differentiation of cells results in patterning of tissues. The functionality of tissue 
throughout the life is maintained by adult stem cells. Functional studies have 
revealed that lncRNAs play an active role in gene regulation at virtually every stage 
of progression of differentiation of ESCs, namely, cell cycle, pluripotency, differen-
tiation, cell survival, apoptosis, etc. They coordinate exit from pluripotency to ter-
minal differentiation. After tissue differentiation, they have emerged as an important 
class of regulator for maintenance of adult stem cells [102].

Differentiation of skin is a regulated multistep process. Skin differentiation is 
well characterized at molecular level, to the extent that skin tissue can be regener-
ated ex vivo and grafted in vivo. It, thus, provides a robust system, where role of 
lncRNAs could be investigated. Two lncRNAs, ANCR and TINCR, expressed in 
epidermal tissue progenitor cells, play a crucial role in epidermal differentiation. 
They exhibit antagonistic function, where TINCR (terminal differentiation-induced 
noncoding RNA) promotes differentiation, and ANCR (antidifferentiation noncod-
ing RNA) inhibits differentiation [103, 104]. TINCR is a cytoplasmic lncRNA 
expressed at low levels in epidermal progenitor cells. Its expression is induced dur-
ing differentiation. A 25-nucleotide region in TINCR (TINCR-Box) interacts with a 
RNA-binding protein staufen1 (STAU1). The resulting TINCR-STAU1 complex 
mediates stabilization of many mRNAs that encode for proteins required for 
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differentiation of keratinocytes. Accordingly, downregulation of TINCR in human 
squamous cells leads to carcinoma. lncRNA ANCR on the other hand enforces 
undifferentiated cell state within the epidermis.

A few lncRNAs are responsible for maintenance of two different states. For 
example, lincRNA known as TUNA (a.k.a. megamind in zebrafish) is a highly con-
served noncoding RNA expressed in cells of neural lineages in the adult brain, spi-
nal cord, and eyes. It has been observed that under different cellular contexts, by 
virtue of its unique protein partners, TUNA may maintain pluripotency of ESCs or, 
in a contrasting role, coordinate neural lineage commitment. This is possible 
because TUNA operates through multiple molecular mechanisms at transcriptional 
or posttranscriptional level [105].

Recently generation of KO animal models have been used to elucidate the role of 
lncRNA in tissue patterning. For example, deletion of complete lncRNA Hotair in 
mouse led to skeletal deformities and homeotic transformation including abnormali-
ties in the wrist and spine [93]. The Mdgt KO mice showed abnormally low body 
weight and slower growth. KO of Fendrr or Peril led to peri-/postnatal lethality of 
the animal [106]. Apart from generation of KO models, extensive characterization of 
ESCs has revealed the role of many lncRNAs involved in enforcement of pluripo-
tency in these cells. The common mechanisms of action employed by these noncod-
ing RNAs though remain the same. A vast majority of them act via interacting with 
chromatin modifiers including the readers, writers, and erasers of histone marks. A 
subset acts as competing endogenous RNA by “sponging” out miRNAs. Table 6.5 
lists lncRNAs involved in mammalian tissue development and organogenesis.

6.3  �lncRNA in Nuclear Architecture and Chromosome 
Structure Maintenance

Genomes are hierarchically folded into complex higher-order structure that gives 
rise to chromatin fiber, chromosomal domains, and condensed chromosomes during 
cell division. In interphase nuclei, chromosomes occupy distinct territory that can 
be defined as the nuclear space taken up by the particular chromosome. During cell 
division, chromatin further gets compacted into distinct X-shaped condensed chro-
mosome, where centromere and telomere play an important role to maintain its 
integrity. The higher-order organization of chromatin is directly linked to gene regu-
lation, and any defect in the organization perturbs gene expression causing diseases. 
Several diseases arise as a result of aberrant chromosome numbers (aneuploidy) and 
chromosome instability during cell division. The role of specific proteins in chro-
matin organization is well established and lncRNAs have now emerged as new play-
ers in this domain. lncRNAs have been found to be an integral part of this global 
phenomenon of higher-order chromatin organization/modulation and chromosome 
structure maintenance. In this section we discuss the role played by lncRNAs in 
nuclear organization.
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Table 6.5  List of lncRNA involved in tissue development and organogenesis

lncRNA Expressed in Function Refs

Skin development
TINCR Human Epidermal differentiation by 

posttranscriptional mechanism
[104]

ANCR Human Suppresses differentiation pathway 
to maintain epidermal adult stem 
cell

[103]

Blood development
LincRNA-EPS Mouse

Hematopoietic organs
Prevents apoptosis in erythroid 
differentiation

[107]

alncRNA-EC1 Mouse
Fetal liver erythroid cell

Regulates erythropoiesis (enhancer-
associated RNA)

[108]

alncRNA-EC7 Mouse
Fetal liver erythroid cell

Regulates expression of Band3 
(enhancer-associated RNA)

[108]

DLEU2 Human and mouse Regulates erythropoiesis and B cell 
maturation
Represses of SPRYD7 gene

[108, 109]

elncRNA-EC1 Mouse Involved in erythroblast 
differentiation

[108]

lincRNA-EC9 Mouse Involved in erythroblast 
differentiation

[108]

Eye development
Tug1 Human, mouse, dog, 

cow, and rat
Retinal cells

Involved in cone photoreceptor 
specification
Associates with PRC2

[110]

RNCR2 (MIAT/
Gomafu)

Mouse
Retinal cells

Involved in retinal cell specification [111]

Six3 Mouse
Eye and retinal cells

Involved in neural specification in 
ES cells of the retina and eye 
(promoter-associated RNA)

[112]

Vax2os Human, other primates, 
and mouse
Retina (outer 
neuroblastic layer)

Involved in retina cell specification
Regulates cell cycle progression of 
photoreceptor progenitor cells in 
ventral retina

[113, 114]

Cardiac development
aHIF Human Associated with cardiac pathology

(Hypoxia-inducible factor 1A 
antisense RNA)

[115]

Kcnq1ot Human Involved in cardiogenesis
Regulates chromatin reorganization 
at imprinted loci

[116]

ANRIL Human Involved in atherosclerosis, 
carcinomas, and inflammatory 
response
Interacts with CBX7 of PRC1 
complex
(antisense noncoding RNA in the 
INK4 locus)

[117, 118]

(continued)
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Table 6.5  (continued)

lncRNA Expressed in Function Refs

SENCR Human Regulation of endothelial 
differentiation from pluripotent 
cells
Controls the angiogenic capacity of 
human umbilical vascular 
endothelial cells (HUVEC)
(Cytoplasmic lncRNA)

[119, 120]

LIPCAR Human Biomarker for myocardial 
infarction
(Mitochondrial lncRNA)

[121]

CARL Human Inhibits anoxia-mediated 
mitochondrial fission and apoptosis
Acts as mir-539 sponge
(Cardiac apoptosis-related lncRNA)

[122]

Mhrt (Myheart) Human
Adult heart

Protects against cardiomyopathy
A chromatin-remodeler and 
antagonizes Brg1 (myosin 
heavy-chain-associated RNA 
transcript)

[105]

MIAT Human Regulates diabetes mellitus-induced 
microvascular dysfunction
Regulates expression of vascular 
endothelial growth factor and 
miR-150-5p (myocardial infarction-
associated transcript)

[123–126]

Braveheart Mouse
Cardiac cells

Regulates cardiovascular lineage 
commitment
Epigenetic regulator that interact 
with Suz12

[127]

Fendrr Mouse Involved in differentiation of 
multiple mesenchyme-derived 
tissues
Associates with PRC2

[128, 129]

Immunological development
TMEVPG1 Human and mouse 

peripheral blood 
lymphocytes (NK+ cells, 
CD4+ and CD8+ T 
lymphocytes)

Involved in immunity modulation [130–132]

NeST Mouse Involved in immunity modulation
Regulates IFNγ transcription

[133]

lncDC Human Controls dendritic cell 
differentiation
Binds to STAT3

[134]

ZFAT-AS Human
CD19+ B cell

Regulates B cell function and 
implicated in autoimmune thyroid 
disease

[135, 136]

(continued)
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Table 6.5  (continued)

lncRNA Expressed in Function Refs

THRIL Human Regulates TNFα expression, 
immune response, and 
inflammation (heterogeneous 
nuclear ribonucleoprotein L-related 
immune-regulatory long noncoding 
RNA)

[42]

PCAER Human Modulates immune response
Prevents binding of p50 subunit of 
repressive NF-κB complex to 
COX-2 promoter (p50-associated 
COX-2 extragenic RNA)

[137]

KIR-AS Human
Hematopoietic 
progenitors
Myeloid precursors

Controls gene expression in 
progenitor cells (killer cell 
immunoglobulin-like 
receptor—antisense)

[138]

PRINS Primates Keratinocyte stress response and 
psoriasis pathogenesis
(Psoriasis-susceptibility-related 
RNA gene induced by stress)

[139]

Neuronal development
AK055040 Human Involved in neuronal differentiation

Interacts with polycomb group 
proteins
(Promoter-associated RNA)

[140]

AK091713 Human Involved in neurogenesis
Overlaps with miRNAs like 
Mir125B and LET7A

[140]

AK124648 Human
ES cells

Involved in promoting pluripotency 
and neuronal differentiation 
(promoter-associated RNA)

[140]

CDKN2B-AS/
ANRIL

Human
Many cell types

Involved in atherosclerosis, 
carcinomas, and inflammatory 
response
Interacts with CBX7 of PRC1 
complex (antisense noncoding 
RNA in the INK4 locus/CDKN2B 
antisense RNA)

[117, 118]

BACE1-AS Human and mouse Positive regulator of BACE1 
expression target for anisomycin-
mediated suppression of ovarian 
stem cell cancer

[141]

BC1/BC200 Human
Nervous 
system—dendrites

Regulates synaptogenesis
Interacts with FMRP and 
translational machineries to 
regulate spatially restricted synaptic 
turnover

[142]

BDNF-AS Human
Nervous 
system—neurites

Controls development of neurite 
elaboration
(Natural antisense transcript)

[142]

(continued)
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Table 6.5  (continued)

lncRNA Expressed in Function Refs

CDRas1 Human and zebrafish miRNA decoy and circular RNA [143]
Cyano Zebrafish miRNA (miR-7) decoy [144]
DALI Human

Neuroblastoma cells
Controls neural differentiation by 
direct interaction with POU3F and 
DNMT1

[145]

Dlx1AS Human Controls neural differentiation 
(enhancer-associated RNA)

[146–148]

Evf2/Dlx6AS Mouse
Central nervous system

GABAergic interneuron 
specification
Interacts with transcription factor 
DLX and methyl-CpG-binding 
protein MECP2 to epigenetically 
regulate expression of interneuron 
lineage genes

[149, 150]

GDNF-OS Human Transcriptional regulator of GDNF 
(promoter-associated RNA)

[142, 151]

GOMAFU Human and mouse
Dividing neural stem 
cells and neurons

Inhibits amacrine cell specification 
and Muller glia differentiation
Interacts with splicing factors to 
regulate alternative splicing of 
several neuronal genes

[152, 153]

Kcna2AS Human Involved in causation of pain and 
hypersensitivity
Inhibits Kcna2 expression that 
leads to decreased voltage-gated 
potassium current and increased 
membrane potential

[154]

Linc-Brn1a and 
LincBrn1b

Mouse
Neural stem cell

Differentiation of neural stem cells 
and cortical neuron development
Regulates basal cortical progenitor 
turnover

[106]

Linc00299 Human
All tissues, 
predominantly brain

Involved in neurodevelopment, 
particularly brain development

[155]

Linc00237 Human Causes MOMO (macrosomia, 
obesity, macrocephaly, and ocular 
abnormalities) syndrome

[156]

Peril Human
Brain and spinal cord

Controls the cell cycle, energy 
metabolism, and immune response 
genes
Transcribed from 110 kb 
downstream of Sox2

[106]

MSN1PAS Human Involved in synapse development [157]
MALAT1 Human and mouse

Neurons
Involved in synaptogenesis and 
synapse formation
Recruits splicing proteins to 
transcription sites

[158, 159]

(continued)
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Table 6.5  (continued)

lncRNA Expressed in Function Refs

Megamind Human, mouse, 
zebrafish

Involved in brain morphogenesis 
and eye development

[144]

Neat1 Human and mouse Induces of paraspeckle formation
(Architectural lincRNA)

[160]

Pantr2/BRN1B Human and mouse
Brain

Regulation of differentiation of 
delaminating neural progenitor 
cells

[161]

Paupar Neuroblastoma cells Interacts with Pax6 to regulate cell 
cycle and differentiation

[162]

PNKY Human and mouse
Brain

Regulates neural stem cell turnover
Balances self-renewal and 
differentiation of neural stem cells 
by regulation splicing regulator 
PTBP1

[163]

RMST Mouse
ESCs

Involved in neural differentiation
Recruits Sox2 to neurogenesis-
promoting genes

[140]

Sox2dt Mouse
Brain

Regulates Sox2 expression in 
neurogenic regions of the brain 
(enhancer-associated RNA)

[164]

SIX3OS Human
Eye

Specification of photoreceptors, 
bipolar cells, and Muller glia 
through SIX3 target genes

[112]

TUG1 Human
Retinal cells

Retinal cell-type specification and 
proliferation

[110]

TUNA Mouse and zebrafish Recruits RNA-binding proteins 
(NCL, PTBP1, and hnRNP-K) to 
neural gene promoters

[165]

utNgn1 Mouse Involved in neocortical 
development
Regulates transcription of 
neurogenin (enhancer RNA 
transcript)

[166]

VAX2OS1 Human
Retinal cells

Involved in retinal cell-type 
specification and proliferation

[114]

Skeletal muscle development
Yam-1 Mouse

Myoblasts
Regulator of myogenesis
Muscle-associated lincRNA 
positively regulated by YY1 and 
represses muscle differentiation 
genes like myogenin (YY1-
associated muscle lncRNA)

[167]

Linc-MD1 Human and mouse
Myoblasts

Regulator of myogenesis
Competing endogenous RNA that 
acts as a sponge for miR-133

[168]

(continued)
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6.3.1  �Interphase Chromatin

That RNA is a significant component of nuclear architecture is known for the past four 
decades [172]. Early studies have conceptualized nuclear matrix (NuMat—a skeletal 
framework in the nucleus) as a scaffold predominantly made up of RNA and protein 
components. NuMat serves as a platform for virtually all nuclear processes, namely, 
DNA replication, repair, RNA transcription, and splicing. Moreover it is suggested 
that NuMat plays a fundamental role regulating gene expression [173]. NuMat is sen-
sitive to RNase, indicating critical role of RNA in formation of the structure. Studies 
in recent years have shown that repeat-containing lncRNAs are involved in building up 
of the nucleo-skeleton. This phenomenon appears to be conserved across species. For 
example, AAGAG repeat-containing lncRNA is an important component of Drosophila 
NuMat, which when depleted leads to lethality at larval stages [174]. Similarly purine-
rich GAA repeat-containing lncRNA was found in mammalian cells [175]. Another 
study provides compelling evidence that RNA transcribed from LINE-1  
interspersed repeats form a significant component of interphase chromatin in human 
cells. Interestingly interspersed repeat sequences, which account for almost half of 
human genome, were abundantly transcribed, and the repeat lncRNAs were found 
associated with euchromatin. Adapter protein SAF-A, by virtue of its DNA- as well as 
RNA-binding domains, links the LINE-1lncRNA to chromatin. The lncRNA stably 
associates with chromatin and its removal leads to aberrant chromatin distribution and 
condensation [176]. Thus LINE-1 lncRNA and other lncRNA species directly associ-
ate with chromatin to add to its stability and functionality from a new class of lncRNAs 
known as chromatin-associated RNAs (caRNAs). However, studies on the role of the 
NuMat RNA in chromatin architecture and caRNAs are limited, and further explora-
tions are needed to unravel the mechanistic details of the process.

6.3.2  �Euchromatin/Heterochromatin

Based on its transcriptional property, interphase chromatin can be distinguished as 
euchromatin and heterochromatin. Euchromatin is loosely packed, replicates early, 
and is permissive to transcription, while heterochromatin is compact, replicates 

Table 6.5  (continued)

lncRNA Expressed in Function Refs

Other organogenesis
Mdgt Mouse Involved in embryonic development

Transcribed from a region close to 
Hoxd1

[106]

Manr, linc-Cox2 Human and mouse
Lungs

Involved in organogenesis of lung [169]

FIRRE Human Controls topological organization 
of multiple chromosomal region
Tethers inactive X chromosome to 
nucleolus

[170, 171]
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later, and is refractive to transcription. These chromatin states are epigenetically 
marked by differentially modified histones and DNA methylation. Several lncRNAs 
are known that mediate these epigenetic changes by recruiting chromatin remodel-
ing complexes to specific loci. For example, the lncRNA HOTAIR (described in 
Sect. 6.2.3) originates in HoxC but silences transcription at HoxD locus in trans by 
recruiting polycomb remodeling complex PRC2 to induce silent chromatin. Very 
recently, a novel lncRNA CAT7 has been identified in human neuronal cells, respon-
sible for fine-tuning stable gene silencing by guiding PRC1 activity [177]. Other 
remodeling complexes like MLL and G9a methyltransferases are similarly directed 
by their associated lncRNAs. Thus a small repertoire of chromatin remodeling com-
plexes with little DNA-binding specificity can be directed to a large number of 
genomic loci, in a spatially/temporally regulated manner, by the virtue of lncRNA 
molecules that act as guides. Even at constitutive heterochromatic regions (centro-
mere and telomere), lncRNAs play a role in directing heterochromatin 
organization.

Apart from heterochromatin, lncRNAs regulate the functionality of euchromatin 
as well. It is now established that to function effectively, regulatory elements like 
enhancers, promoters, and boundaries are transcribed. The initial cues to the finding 
came from a pioneer study where using tiling microarrays the authors found that 
transcripts arise from beginning and end of protein-coding genes [178]. Follow-up 
studies confirmed bidirectional transcription from CpG-rich, nucleosome-depleted 
regions at gene promoters using a separate pre-initiation complex. Such transcrip-
tion generates transcription start site-associated RNAs (TSSa-RNAs). These TSSa-
RNAs regulate transcription initiation events [179, 180]. Such TSSa-RNAs are not 
only responsible for turning genes on, but at times they are responsible for causing 
gene-specific repression also. For example, in human cell lines, DNA damage 
induces the expression of lncRNA from cyclin D1 promoter, which modulates the 
levels of RNA-binding protein known as translocated in liposarcoma (TLS). Protein 
TLS in turn modulates histone acetyl-transferase activity at the loci to silence the 
neighborhood [181]. Similarly enhancers are transcribed in cells where they are 
supposed to remain active, and this strategy is used for regulation of key develop-
mental genes [182]. According to a report, in human ESCs, ~19% of lncRNAs are 
enhancer RNAs (eRNAs) [183]. Interestingly, eRNAs are also often bidirectionally 
transcribed. Coming to another important class of regulatory elements known as 
boundaries/insulators, a classical example of lncRNA involved in creating a func-
tional boundary comes from the imprinted H19/IGF2 locus, described in detail in 
Sect. 6.2.1. While boundaries are technically described as elements that, when pres-
ent in between, prevent enhancer to promoter cross talk, insulators separate two 
distinct epigenetically modified chromatin domains, and when present at the junc-
tion, they may restrict the spread of heterochromatin into euchromatin. Most of 
mammalian boundaries and insulators are known to bind to protein CTCF [184]. 
CTCF further recruits cohesin complex to the loci, and this loading of cohesin is 
essential for insulator function. Some lncRNAs are known to act as scaffolds that 
stabilize interaction of CTCF along with other factors to boundaries/insulators. For 
example, a DEAD-box RNA helicase (p68) associates with lncRNA known as ste-
roid receptor RNA activator (SRA). This complex then recruits CTCF to execute 
insulator function at H19/IGF2 locus [185]. Many a time, transcription of tRNA 

6  Long Noncoding RNAs in Mammalian Development and Diseases



180

genes (tRNAs are also lncRNAs) results in establishment of a boundary [186, 187]. 
In yet another example, tissue-specific transcription of a retrotransposon repeat at 
murine growth hormone locus leads to establishment of a boundary that blocks the 
influence of neighboring repressive chromatin [188]. From these examples it thus 
becomes evident that lncRNAs function as master regulators that control the func-
tionality of euchromatic regulatory elements.

6.3.3  �Genomic Stability

In addition to the lncRNAs mentioned above that directly interact with chromatin, 
there are other noncoding transcripts that are indirectly involved in maintaining the 
genomic stability. One such lncRNA known as NORAD/LINC00657 (noncoding 
RNA activated by DNA damage) is a highly conserved and abundant transcript 
present in cytoplasm of human cells (more than 300–1000 copies per cell) [189]. 
The lncRNA was initially identified for inducing p53-mediated response to DNA 
damage in mouse and human cells [76]. Later investigations found that targeted 
inactivation of NORAD triggers changes in ploidy level and results in variable chro-
mosome numbers in karyotypically stable human cells. This suggested NORAD to 
have a role in chromosomal stability. NORAD has conserved binding sites that 
sequester the PUMILIO proteins (PUM1/2). PUMILIO are RNA-binding proteins 
that induce chromosomal instability by repressing mitosis, DNA repair, and DNA 
replication factors. Interestingly, in the human brain, expression of NORAD 
decreases with increasing age. These studies indicate multiple roles of NORAD by 
alternative mechanisms that are yet to be identified. However, the discovery of 
NORAD–PUMILIO genomic stability pathway has attracted scientific community’s 
attention to explore other unknown lncRNAs involved in genomic stability, mainte-
nance, and their link to chromosomal abnormalities.

6.3.4  �Nuclear Compartmentalization

Eukaryotic nucleus is very well compartmentalized at structural and functional level 
by mechanisms that are conserved across species. The mammalian nucleus contains 
discrete subnuclear bodies that carry out specific functions [190]. A distinguishing 
feature of the nuclear bodies that differentiates them from conventional cytoplasmic 
organelles is that a lipid membrane does not delimit them. Their structural integrity 
is entirely maintained by protein–RNA and protein–protein interactions. The 
nuclear bodies are highly dynamic as they assemble/disassemble during every cell 
division. They are rapidly formed as a response to specific cellular triggers [191]. 
Many nuclear bodies form around the site of transcription of lncRNAs. For exam-
ple, nucleolus forms around site of rRNA transcription and stress bodies form 
around transcribing satellite III repeats. The lncRNA transcripts at these loci act as 
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templates to assemble RNA-binding proteins that in turn result in the formation of 
nuclear bodies. In addition, lncRNAs can function as architectural element away 
from where they are transcribed. For example, the lncRNA NEAT1 is a polyadenyl-
ated nuclear-retained transcript, essential for the formation of paraspeckles [160]. 
Its causal role in the formation of paraspeckles is proven as in the absence of its 
transcription in human ESCs, paraspeckles are not formed [192]. Similarly, over the 
last decade, many noncoding RNAs like MALAT1 (for nuclear speckles), TUG1 (for 
polycomb bodies), U-snRNAs (for Cajal bodies), and U7-snRNA (for histone body 
locus) have been found that play an architectural role in nuclear body formation.

6.3.5  �Topological Domains

Chromosome conformation capture techniques have revealed that distally located 
DNA elements come in close proximity in three-dimensional nuclear space. Such 
contacts are cell and context specific with functional consequences. These contacts 
define chromatin loops that provide topological framework for co-regulated genes, 
commonly known as topological domains (TADs) [193]. Latest developments show 
that lncRNAs play a vital role in chromatin looping. A remarkable example of 
lncRNAs involved organization of genome into TADs is that of Firre (functional 
intergenic repeating RNA element) in humans and mouse. Firre is expressed from a 
macrosatellite locus in mouse and contains several cohesin- and CTCF-binding 
sites required for its functionality. Repeat domains in Firre through its interaction 
with hnRNPU (a nuclear matrix component protein) localize across a 5-Mb TAD on 
X chromosome. By serving as a scaffold, Firre mediates intra-chromosomal bridges 
to define the TADs. Thus Firre plays an architectural role in organizing the X chro-
mosome in TADs that have similar expression state [170]. This lncRNA also medi-
ates the X-chromosome tethering to nucleolar surface where the repressive state is 
maintained through H3K27 methylation. Obviously and interestingly enough Firre 
itself escapes X-inactivation.

6.3.6  �Centromere

Centromeres are specialized structures for proper segregation and equal partitioning 
of chromosomes during cell division. Centromere is functionally divided into two 
distinct domains, the core domain which specifies kinetochore formation and its 
flanking pericentric heterochromatin. DNA at the pericentric heterochromatic 
region is rich in α-satellite repeats. Core centromeric domain is characterized by the 
presence of histone H3 variant CENP-A. The pericentromeric heterochromatin con-
tains H3K9 and DNA methylation and associates with heterochromatic protein 
HP1. Observations suggest that lncRNA transcribed from the satellite repeats lead 
to heterochromatin establishment as well as proper kinetochore assembly. 
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Involvement of lncRNA in organization of centromere can be seen across all phyla, 
from plants, yeast, and invertebrates to vertebrates [194–196]. For example, maize 
centromeric repeats transcribed from both strands yields 900 nucleotide long tran-
scripts that bind to CENP-A ortholog CENH3 [197]. Frog centromeric repeat (Fcr1) 
noncoding RNA of ~175 nucleotides is required for normal Aurora-B (kinase) 
localization to centromere and kinetochore formation in Xenopus [198].

In mouse cell lines (MS5 and C2C12), transcripts of up to 4 kb from minor satel-
lite repeats at centromere have been detected under normal physiological condition. 
These transcripts accumulate during stress or differentiation. Forced accumulation 
or ectopic expression of the transcripts cause impaired centromeric function and 
chromosome segregation defects [194]. Human centromeric α-satellite repetitive 
DNA is transcribed by RNA polymerase II to produce noncoding RNAs of variable 
size containing repetitive unit 171-bp nucleotides [195, 199]. These α-satellite tran-
scripts have functional importance in chromosome stability and centromere regula-
tion as the RNA is essential for localization of the proteins CENP-C and INCENP 
to centromere. The centromeric proteins are sequestered in nucleolus during inter-
phase and relocated to centromere during mitosis. That RNA is responsible for 
proper localization of these proteins is confirmed by RNaseA treatment where RNA 
depletion abrogates their nucleolar and centromeric localization [195]. Further 
human studies have found that knockdown of α-satellite induces abnormal mitosis 
and formation of “grape-shaped” nuclei. The α-satellite transcripts recruit CENP-A 
and its chaperone HJURP into centromeric chromatin. In addition, α-satellite tran-
scripts can also interact with Shugoshin (Sgo1)—a cohesin protein chaperone that 
binds and protects cohesin at inner centromere. It is an essential effector for main-
taining centromeric cohesion, which if lost prematurely may result in mitotic dis-
ruption [200, 201].

Although the role of centromeric proteins in kinetochore assembly and chromo-
some segregation is well established, the α-satellite transcribed repeat lncRNAs 
have now emerged as new players in this domain. As these transcripts arise from 
pericentromeric heterochromatin, their abnormal accumulation reflects derepres-
sion of heterochromatin. Such a scenario is indicative of disease and stress. Higher 
abundance of α-satellite transcripts has been reported in pancreatic and epithelial 
cancers. Whether it is the cause or a consequence of global heterochromatin, dere-
pression during cancer is a matter still under investigation [202].

6.3.7  �Telomeres

Apart from centromeres, telomeres are special structures at chromosome ends that 
are vital for its integrity and stability during cell division. Telomeres have been 
termed as the cellular clocks that determine the replicative lifespan of normal 
somatic cells. This is because cellular senescence is associated with a gradual short-
ening of telomere length. Telomere shortening results because of limitations of 
semiconservative DNA replication machinery that cannot fully replicate the end of 
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a linear DNA. A specific ribonucleoprotein complex containing the enzyme telom-
erase (TERT) is required for DNA replication at the chromosome ends for telomere 
length homeostasis. TERT is a reverse transcriptase, which elongates telomeric 
DNA using associated RNA molecule as a template [203]. Majority of human can-
cer cells possesses active telomerase in contrast to normal somatic cells that have 
undetectable telomerase activity [204–206]. The RNA component of the telomerase 
complex is a lncRNA known as TERC (telomerase RNA component) that serves as 
the template for telomeric repeat synthesis and scaffold for assembly of associated 
factors. TERC knockout mice show short telomere, chromosomal instability, and 
premature aging suggesting its important role [207].

In addition to TERC, another novel lncRNA, TERRA (telomeric repeat-containing 
RNA), has been identified in mammals that are transcribed from sub-telomeric 
regions by RNA polymerase II and have variable lengths ranging between 100 and 
>9000 nucleotides [208, 209]. TERRA molecules play critical role in telomere 
maintenance as they regulate telomerase activity and heterochromatin formation at 
chromosome ends. One of the roles of TERRA is to recruit proteins including 
H3K9me3, HP1, and chromatin remodeling factors to promote heterochromatin 
formation at chromosome ends [210]. The other role envisaged for TERRA is in 
proper capping of the chromosome ends by binding to shelter in proteins (TRF1 and 
TRF2). Association of TERRA to telomeres is not only because of RNA–protein 
interaction, but recent evidences show that TERRA transcripts base pair with tem-
plate DNA forming RNA–DNA hybrids known as R-loops that are important for 
telomere stability [211]. As TERRA participates in capping, it prevents activation of 
DNA damage response (DDR) at chromosome ends. In replicating cells lacking 
telomerase, telomere shortens with every cell division, eliciting a DDR that results 
in cellular senescence. TERRA actively prevents DDR by recruiting lysine-specific 
demethylase (LSD1) and chromatin remodeling factors to the telomere [212].

Disruption of nuclear organization correlates with diseased states and in some 
cases the lncRNA has been found to be the aberrant molecule. For example, in an 
autosomal dominant disease known as facioscapulohumeral muscular dystrophy 
(FSHD), loss of lncRNA DBE-T results in topological reorganization of the locus 
derepressing several genes [213].

6.4  �lncRNA Etiology in Human Diseases and Disorders

As lncRNAs express in a precisely regulated pattern that is related to development/
function, it makes sense that their mis-regulation or mutation would cause disease/
disorder. Cancer, which poses a big challenge toward community health in the 
twenty-first century, is still unconquered. Most cancers arise due to somatic/germ-
line mutations that result in loss of cellular homeostasis. Recent evidences suggest 
that most of these mutations lie in genomic regions that lack protein-coding capac-
ity but express lncRNAs. Indeed genome-wide association studies (GWAS) and 
comparative transcriptomic studies have associated lncRNAs with cancer as well as 
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several other diseases. Almost half of all traits associated with SNPs in GWAS 
occur in intergenic sequences and only a small fraction lie in exons [214]. Another 
study found that lincRNAs are more than fivefold enriched for SNPs than non-
expressed intergenic regions which indicates the functional significance of these 
lncRNAs [215].

The growing awareness of lncRNA regulatory mechanisms and the mechanism 
of action of lncRNA themselves offers useful therapeutic targets. It is possible to 
manipulate the levels of these lncRNAs in vivo, using interventions such as treat-
ment with antisense oligonucleotides (ASO). One such example can be seen in a 
study where in a murine model of Angelman syndrome, ASO-based silencing of 
disease causing lncRNA Ube3a-ATS leads to activation of Ube3a. This restoration 
of Ube3a activity caused recovery from cognitive deficits associated with the syn-
drome [216]. Such use of ASO in treatment of a diseased murine model is a step 
forward toward use of lncRNA-based therapies in treatment of challenging dis-
eases like cancer. To this end, exploratory results obtained using cancer cell lines, 
mouse models, and nonhuman primates have been very promising. Table  6.6 
shows a list of lncRNA associated with various diseases and disorders. We have 
excluded lncRNAs associated with cancers as they are discussed in a separate 
chapter in the book.

Table 6.6  lncRNAs associated with human diseases/disorders/syndromes

Disease/disorder/syndrome lncRNA Refs

Immune system diseases and syndromes
Systemic lupus erythematosus FNDC1, TAGP, SOD2, WTAP, 

ACAT2
[217]

Rheumatoid arthritis Multiple lincRNAs [218]
Kawasaki disease THRIL [42]
Thyroid disease SAS-ZFAT [219]
Sézary syndrome SeCATs [220]
Skin diseases
Psoriasis PRINS (psoriasis-

susceptibility-related RNA)
[139]

Melanoma BANCR, SPRY4-IT1 [221, 
222]

Developmental disorders and syndromes
FSHD (facioscapulohumeral muscular dystrophy) 
syndrome

DBE-T [213]

Brachydactyly Type E DA125492 [223]
Immunodeficiency, centromeric region instability, 
facial anomalies, dyskeratosis congenital, aplastic 
anemia, idiopathic pulmonary fibrosis

TERRA [224]

Pseudohypoparathyroidism, McCune–Albright 
syndrome

NESP-AS [34]

Transient neonatal diabetes mellitus HYMAI [225]
Klinefelter’s syndrome XIST [226]

(continued)
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6.5  �Concluding Remarks

Soon after the announcement of human genome sequence, it became clear that 
protein-coding region constitutes only a tiny minority of the whole genome. 
Nonprotein-coding DNA increases with increasing evolutionary complexity, and 
surprisingly most of these sequences are transcribed. Investigations have revealed 
that many classes of lncRNAs are transcribed from ~75% of human genome that was 
previously regarded as nonfunctional “selfish DNA” and part of evolutionary junk-
yard. Interestingly the protein toolkit of organisms has remained the same through 
billion years of evolution. For example, human and mice share 99% of their protein-
coding genes. The phenotypic diversity appears to have been achieved primarily by 
modular use of a subset of the proteome. Thus spatial and temporal control of gene 

Table 6.6  (continued)

Disease/disorder/syndrome lncRNA Refs

Neurodevelopmental disorders, syndromes, and neural diseases
Fragile X syndrome FRM4 (FMR1-AS1), BC1 [227, 

228]
Schizophrenia BDNF-AS, Gomafu, DISC-2, 

Evf2
[152, 
229]

Prader–Willi syndrome SNORD116 (HBII-85), C/D 
box cluster, ZNF127AS

[230, 
231]

Angelman syndrome UBE3A-AS [232]
Autism spectrum disorders ST7OT1, ST7OT2, ST7OT3, 

PTCHD1AS1, PTCHD1AS2, 
PTCHD1AS3, SHANK2-AS, 
BDNF-AS, MSNP1-AS

[157, 
233, 234]

Rett’s syndrome AK087060, AK081227 [235]
Microphthalmia 3 syndrome SOX2OT [164]
2p15-p16.1 microdeletion syndrome FLJ16341 [236]
Down syndrome NRON [237]
Alzheimer’s disease BACE1-AS [238]
Beckwith–Wiedemann syndrome H19 and KCNQ1OT1 l [239, 

240]
Silver–Russell syndrome H19 [239]
McCune–Albright syndrome NESP-AS [34]
Neuropathic pain KCNA2-AS [154]
Cardiac diseases and disorders
Heart failure Mhrt [105]
Cardiac hypertrophy CHRF, Novlnc6 [241]
Myocardial infarction MIAT, LIPCAR [121, 

123]
Spectrum of cardiac disorders FENDRR, Braveheart, CARL, 

KCNQ1OT, MALAT1
[105]

Blood and circulatory system disorders and syndromes
HELLP (hemolysis, elevated liver enzymes, and 
low platelets) syndrome

HELLP [242]

Atheromatosis and atherosclerosis ANRIL [243]
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expression is instrumental in driving evolutionary diversity and lncRNAs have been 
found to play a key role in the process. This even challenges the central dogma 
where RNA was just thought to be a passive messenger between DNA and proteins 
and has brought regulatory role played by lncRNAs to center stage.

Deep transcriptomic analyses have begun to rediscover the RNA world and its 
relation with organismal complexity. Present evidences argue that evolutionary 
complexity results due to interactions of few and fairly similar proteins whose 
expression is spatially and temporally controlled by regulatory RNA network. The 
primary basis of higher complexity thus lies in the variation and expansion of this 
regulatory network. The regulatory network represented largely by lncRNAs is 
more plastic than the protein-coding sequences that are constrained by strict 
structure–function relationship. Any sequence variation in protein-coding region 
(mutations) can be toxic and thus deleterious, giving rise to severely compromised 
phenotype. But sequence variation in regulatory regions is often tolerated with mild 
consequences and no discernable phenotype. This “mutation” versus “variation” in 
nature provides the raw material for evolution.

Higher eukaryotes employ RNA-mediated regulatory mechanisms to control a 
plethora of molecular mechanisms. In the nucleus they regulate gene activity via 
chromatin remodeling, epigenetic processes, RNA transcription, splicing and pro-
cessing, etc. In cytosol they can effectively control RNA translation, RNA stability, 
and signaling. They virtually are the primary control axis of differentiation, devel-
opment, and diseases, and to find out the basis for complex human diseases, it is 
essential that all lncRNAs are identified, their expression pattern is unraveled, and 
mechanism of action is elucidated. A deeper transcriptomic analysis of different 
cells under physiologic and pathologic conditions may pave the way to understand 
complex human diseases and, thereby, help to improve the quality of human life.
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