
Chapter 14

Molecular Anatomy of an Ion Channel
Explored Utilizing Fluorescence
Spectroscopy

Arunima Chaudhuri and Amitabha Chattopadhyay

Abstract Ion channels are transmembrane proteins and represent important cellu-

lar components that connect the inside of the cell to its outside in a selective

fashion. The linear ion channel peptide gramicidin serves as an excellent prototype

for monitoring the organization, dynamics and function of membrane-spanning

channels due to a variety of reasons. The fluorescent tryptophan residues in

gramicidin channels are crucial for establishing and maintaining the structure and

function of the channel in the membrane bilayer. In this review, we have

highlighted a variety of representative fluorescence-based approaches to gain

molecular insight into gramicidin conformations. Since gramicidin shares common

structural features with more complex ion channels, the results from fluorescence-

based studies with gramicidin could be relevant for more complex ion channels.
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14.1 Introduction

Ion channels are important cellular nanomachines that regulate ionic permeability in

cell membranes. They are integral membrane proteins with multiple transmembrane

domains. Their ability to connect the inside of the cell to its outside in a selective

fashion makes them crucial elements in cellular signaling and sensing. Defects in the

function of ion channels result in diseases [1] such as cystic fibrosis [2]. Advances in

DNA sequencing technology have linked many diseases to defects in ion channels

and, the term ‘channelopathy’ has been coined [3]. Drugs acting on ion channels have
long been used as therapeutics for treatment of a wide spectrum of disorders. This

makes them a favorite target for the pharma industry and ~15 % of the world’s
100 top-selling drugs are currently targeted to ion channels [4].

Although ion channels are important members in cellular physiology, detailed

structure-function analysis of ion channels at high resolution has proved to be
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challenging till very recently. In the overall context of the complexity and difficulty

involved in studying large ion channels at molecular resolution, the linear peptide

gramicidin has proved to be a relevant model for ion channels. Gramicidin forms

prototypical ion channels specific for monovalent cations and has been extensively

used to monitor the organization, dynamics, and function of membrane-spanning

channels and integral membrane proteins [5]. Gramicidin is a multi-tryptophan

peptide (Trp-9, 11, 13, and 15) with alternating L- and D-chirality (see Fig. 14.1a).

The advantages of gramicidin as ion channel include its small size, ready avail-

ability and the relative ease with which chemical modifications can be performed.

These excellent features contribute to the usefulness of gramicidin and form the

basis for its use to explore the principles that govern the folding and function of ion

channels.

More importantly, gramicidin channels share important structural features

involving ion selectivity with complex ion channels such as KcsA potassium

channels [6]. The unique sequence of alternating L- and D-chirality allows grami-

cidin to assume a variety of environment-sensitive conformations. Among these,

two major conformations are: (i) the single stranded β6.3 helical dimer (the ‘chan-
nel’ form), and (ii) the double stranded intertwined helix (collectively known as the
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Fig. 14.1 (a) The amino acid sequence of gramicidin A with its unique alternating L- and D-

chirality. Aromatic amino acids (tryptophans) are highlighted and their positions are indicated. (b)
A schematic representation of the two predominant forms of gramicidin, the nonchannel and

channel conformations, displaying the locations of tryptophan residues in the membrane bilayer. A

hallmark of the channel conformation is the clustering of tryptophans toward the membrane

interface. A distinctive difference is observed in the tryptophan distribution in the nonchannel

conformation in membranes, where the tryptophans span the entire bilayer normal. See text for

other details (Adapted and modified from refs. [5] and [26] with permission from Elsevier)
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‘nonchannel’ form) (see Fig. 14.1b) [5]. The amino terminal-to-amino terminal

single-stranded β6.3 helical dimer form is the thermodynamically preferred confor-

mation in membranes and membrane-mimetic media. In this conformation, the

tryptophan residues remain clustered at the membrane-water interface [7–10]. Inter-

estingly, the membrane interfacial localization of tryptophan residues is absent in

‘nonchannel’ conformations and the tryptophan residues are distributed along the

membrane axis [5, 7, 11]. Nonchannel conformations have been shown to exist in

membranes with polyunsaturated lipids [12], and in membranes with increased acyl

chain lengths under hydrophobic mismatch conditions [13, 14].

14.2 Tryptophan: A Uniquely Placed Amino Acid
in Membrane Proteins

The presence of tryptophan residues as intrinsic fluorophores in membrane peptides

and proteins makes them an attractive choice for fluorescence spectroscopic ana-

lyses [15–19]. Tryptophan residues play an important role in the structure and

function of membrane proteins and peptides (recently reviewed in ref. 19). Tryp-

tophan residues in membrane proteins and peptides are not uniformly distributed,

but tend to be localized toward the membrane interface (see Fig. 14.2). The

interfacial region in membranes has unique motional and dielectric characteristics

distinct from both the bulk aqueous phase and the hydrocarbon-like interior of the

membrane [18, 20, 21]. The interfacial localization of tryptophan in membrane

proteins and peptides, along with the fact that the distribution and localization of

tryptophans in the two major conformations of gramicidin are distinctly different

(see Fig. 14.1b), allow us to explore conformations adopted by gramicidin and its

tryptophan analogs using fluorescence spectroscopic readouts. In this review, we

have highlighted representative fluorescence-based approaches to gain insight into

gramicidin conformations. Since gramicidin is a prototypical ion channel [5] and

shares common structural features with more complex ion channels, which are

more challenging to work with [6], the results from these studies form the basis of

addressing ion channel conformations under varying conditions.

14.3 Ion Channel Conformations Explored Using REES

Red edge excitation shift (REES) is a popular tool to explore organization, dynam-

ics and conformation of membrane probes, proteins and peptides [17–20]. REES is

defined as the shift in the wavelength of maximum fluorescence emission toward

longer wavelengths, caused by a shift in the excitation wavelength toward the red

edge of the absorption spectrum. REES becomes significant in case of fluorophores

with a relatively large change in dipole moment upon excitation in restricted
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environment. Unlike other fluorescence approaches, REES data contain informa-

tion on the rotational dynamics of excited state dipoles around the fluorophore,

thereby providing a window to the dynamics of the environment. In our laboratory,

we have utilized REES to monitor the conformation and dynamics of a variety of

membrane peptides and proteins including gramicidin [7, 10, 22–26], melittin

[27, 28], the pore-forming α-toxin from S. aureus [29], the N-terminal domain of

CXC chemokine receptor (CXCR1) [30], and membrane-bound bovine

α-lactalbumin. [31] A particularly attractive example is the application of REES

to conformational analysis of gramicidin, a representative ion channel peptide.

As mentioned above, two major conformations adopted by gramicidin in various

media are: (i) the single stranded β6.3 helical dimer (the ‘channel’ form), and (ii) the

double stranded intertwined helix (collectively known as the ‘nonchannel’ form)

(see Fig. 14.1b). In the channel conformation in membranes, the tryptophan
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Fig. 14.2 A schematic representation of a typical transmembrane domain of a representative

membrane protein (such as ion channels) in the bilayer showing distinct preferences of various

amino acids for different parts of the membrane bilayer. The membrane lipids shown have two

hydrophobic tails with a phosphatidylcholine headgroup. It should be noted that the aromatic

amino acids, especially tryptophan and tyrosine residues, are localized in the membrane interface

region, a feature shared by many ion channels [11]. The membrane interface, constituting� 50 %

of the thickness of the bilayer, is represented by a heterogeneous environment characterized by

relatively slow dynamics. This region also exhibits higher polarity relative to the hydrophobic

core, predominantly due to the restricted water molecules (Adapted and modified with permission

from ref. [19] (copyright (2014) American Chemical Society))
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residues are clustered at the membrane-water interface [7, 9, 10]. We earlier

showed that the tryptophan residues of gramicidin in the channel conformation

exhibit REES, implying that the tryptophan residues are localized in the interfacial

region and experience motional restriction [7, 10]. In an important application of

REES to conformational analysis of membrane proteins, we demonstrated that

various conformations of membrane-bound gramicidin could be distinguished

using their REES signatures (see Fig. 14.3) [7]. The basic principle of such

conformation-specific REES is the fact that the microenvironment of the trypto-

phans in these conformations are different, thereby giving rise to different REES

readouts (see Fig. 14.3b). For example, while the tryptophan residues are clustered

toward the membrane interface in the channel conformation of gramicidin, they are

distributed along the membrane axis in the nonchannel conformation. We have

previously demonstrated, using anthroyloxy probes, that the vertical location

(depth) of a fluorophore in the membrane is an important parameter in their ability

to exhibit REES [32]. Fluorophores localized at the shallow membrane interfacial

region experience restricted dynamics due to the physicochemical nature of the

interfacial region, and exhibit REES. On the other hand, fluorophores localized at

deeper locations in the membrane experience much more dynamic environment and

exhibit reduced REES. This principle has proved to be very useful in conforma-

tional analysis of gramicidin in membranes. In agreement with this, the tryptophans

in the channel conformation of gramicidin (with tryptophans at the motionally

restricted interfacial region) give rise to REES of 7 nm. In contrast, tryptophans

in the nonchannel conformation of gramicidin (distributed along the membrane axis

with varying degrees of motional restriction) give rise to REES of only 2 nm. More

importantly, it was possible to monitor REES exhibited by conformational inter-

mediates in the folding pathway of membrane-bound gramicidin from the initial

nonchannel to the final channel conformation (denoted as intermediates I and II in

Fig. 14.3b). The progressive increase in REES from the nonchannel conformation

to the channel conformation through the intermediate folding conformations cor-

responds to the conversion of the nonchannel form to the channel form of grami-

cidin. This is due to gradual change in the location of tryptophan residues from a

distribution along the bilayer normal to being clustered at the membrane interface.

14.4 Conformational Heterogeneity: Use of Fluorescence
Lifetime Distribution Analysis

Conformational heterogeneity in membrane proteins can be assessed using fluores-

cence lifetime distribution analysis of tryptophan residues by the maximum entropy

method (MEM). MEM represents a model-free robust approach for analyzing

fluorescence lifetime distribution [21, 33–35]. The width of the lifetime distribution

obtained by this method is correlated with the degree of heterogeneity of the

environment sensed by the fluorophore.

14 Molecular Anatomy of an Ion Channel Explored Utilizing Fluorescence Spectroscopy 357



The differential conformational heterogeneity sampled by gramicidin con-

formers is shown in Fig. 14.4. The figure shows tryptophan lifetime distributions

by MEM analysis in the channel and nonchannel conformations of gramicidin

[36]. Interestingly, fluorescence lifetime distribution of tryptophan residues in the

nonchannel form (characterized by a width of the distribution (w) of 3.40 ns,

represented as full width at half maxima for the major lifetime peak) was found

to be significantly broader relative to the corresponding width for the channel form

(w¼ 0.96 ns). This indicates that the tryptophan residues in the nonchannel form

experience relatively heterogeneous environment relative to the environment expe-

rienced in the channel form. This is in agreement with the fact that tryptophan

residues are clustered at the membrane interfacial region in the channel form, while
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Fig. 14.3 Monitoring

conformations of ion

channels using REES as a
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wavelength on the
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they are spread all across the bilayer normal in case of the nonchannel form (see

Fig. 14.1b). Fluorescence lifetime distribution analysis by MEM therefore provides

a novel window to monitor such conformational transitions in membrane proteins

such as ion channels. Since ion channels require a variety of conformations for

carrying out their function, this approach provides a unique way to sample the

conformational plasticity associated with each conformation.

14.5 Understanding the Functional Role of Tryptophans
in Gramicidin Channel: Insights from Tryptophan
Analogs

Interestingly, tryptophans in gramicidin channels have been shown to be crucial for

maintaining the structure and function of the channel [5]. The importance of

gramicidin tryptophans is apparent from the observation that the cation
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Fig. 14.4 Conformation-

dependent heterogeneity

profiles of the tryptophan
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from ref. [36] with kind

permission from Springer

Science and Business

Media)

14 Molecular Anatomy of an Ion Channel Explored Utilizing Fluorescence Spectroscopy 359



conductivity of the ion channel decreases upon substitution of one or all of the

tryptophan residues by phenylalanine, tyrosine or naphthylalanine [37–39], and

also upon ultraviolet irradiation or chemical modification of the tryptophan side

chains [40–42]. Additionally, it has been shown that gramicidins with Trp! Phe

substitutions face greater difficulty in forming membrane-spanning dimeric chan-

nels [39, 43]. With an overall goal of understanding the structural basis of the role

of tryptophans in maintaining the ion channel structure of gramicidin, we used

single tryptophan gramicidin analogs with three Trp! Ser-t-butyl substitutions
using a combination of fluorescence approaches which include REES and mem-

brane penetration depth analysis [24]. The Ser-t-butyl side chain was chosen

because it is approximately as hydrophobic as Phe, yet not aromatic. Figure 14.5a

shows the amino acid sequence of these single tryptophan analogs. REES results

using these single tryptophan analogs are shown in Fig. 14.5 (panels b and c).

Figure 14.5c shows that single tryptophan analogs Trp-15, Trp-13, and Trp-11

exhibited REES of 4–7 nm. In contrast, Trp-9 displayed enhanced REES of

15 nm. Based on these results in combination with membrane penetration depth

analysis [44], size-exclusion chromatography and backbone CD data, we demon-

strated that the gramicidin analogs containing single tryptophan residues adopt a

mixture of channel and nonchannel conformations, thereby reducing ion channel

activity.

In order to address the basis of differential importance of tryptophan residues in

gramicidin channel, we explored the effects of pairwise substitution of two of the

four gramicidin tryptophans, the inner pair (Trp-9 and -11) and the outer pair

(Trp-13 and -15), using a combination of steady state and time-resolved fluores-

cence approaches and circular dichroism spectroscopy (see Fig. 14.6a for the

sequence of double tryptophan analogs) [25]. The normalized emission spectra of

the double tryptophan gramicidin analogs (Phe9,11gA and Phe13,15gA) are shown in

Fig. 14.6b. The analog (Phe13,15gA) containing the inner pair of tryptophans (Trp-9

and -11) displays an emission maximum of 331 nm, while the analog (Phe9,11gA)

containing the outer pair of tryptophans (Trp-13 and -15) displays a red shifted

emission maximum of 338 nm (the emission maximum of gramicidin in the channel

conformation is 333 nm, whereas the nonchannel conformation exhibits an emis-

sion maximum of 335 nm, when excited at 280 nm) [7]. The difference in emission

maximum among the analogs is indicative of differential localization of the tryp-

tophans along the bilayer normal. Figure 14.6c shows REES data for the double

tryptophan analogs. In case of the analog Phe9,11gA, containing the outer pair of

tryptophans (Trp-13 and -15), we obtained a REES of 9 nm (shift in emission

maximum from 338 to 347 nm when excitation wavelength was changed from

280 to 310 nm). In contrast, the emission maximum for the analog Phe13,15gA

containing the inner pair of tryptophans (Trp-9 and -11), exhibited a shift from

331 to 349 nm as the excitation wavelength was changed from 280 to 310 nm,

giving rise to an enhanced REES of 18 nm. Such large magnitudes of REES are

indicative of ground state conformational heterogeneity. Further analysis

employing circular dichroism and time-resolved anisotropy decay measurements

established that these double tryptophan gramicidin analogs adopt different
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conformations in membranes, indicating that the conformational preference of

double tryptophan gramicidin analogs is dictated by the positions of the tryptophans

in the sequence. These results assume relevance in the context of the report that the

inner pair of tryptophans (Trp-9 and -11) is more important for gramicidin channel

formation and channel conductance [45].

In yet another study, we tested the importance of indole hydrogen bonding in

gramicidin channels, by monitoring the effect of N-methylation of gramicidin

tryptophans, using a combination of steady state and time-resolved fluorescence

approaches [26]. As stated above, gramicidins with Trp! Phe or Tyr substitutions

have greater difficulty in forming membrane-spanning dimeric channels

[39, 43]. However, these results do not provide information on specific properties

of tryptophan that contribute to the loss of channel structure and function. The loss

in structure and function upon substitution of tryptophan with phenylalanine or

tyrosine could be attributed to loss of dipole moment, hydrogen bonding ability,

change in hydrophobicity, or a combination of these factors. In order to assess the
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Fig. 14.5 Exploring the organization of single tryptophan analogs of gramicidin. (a) The posi-

tions of tryptophan and Ser-t-butyl (designated as B) in the amino acid sequence of gramicidin A

and the single tryptophan analogs are highlighted, with alternating L- and D-residues indicated on

the top. (b) Effect of changing excitation wavelength on the emission maximum for W(11,13,15)

BgA (abbreviated as Trp-9) (●), W(9,13,15)BgA (Trp-11) (♦), W(9,11,15)BgA (Trp-13) (■), and

W(9,11,13)BgA (Trp-15) (~) in membranes. The lines joining data points are provided merely as

viewing guides. (c) The magnitude of REES obtained for the single tryptophan analogs of

gramicidin is sensitive to tryptophan depths from the centre of the bilayer. The magnitude of

REES corresponds to the total shift in emission maximum when the excitation wavelength is

changed from 280 to 307 nm (data shown in (b)) (Adapted and modified from ref. [24] with

permission from Elsevier)
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contribution of hydrogen bonding ability of tryptophans in maintaining the channel

conformation of gramicidin, tryptophan residues were modified to

1-methyltryptophanm (see Fig. 14.7a for chemical structures of indole and

1-methylindole). This modification leads to loss of hydrogen bonding ability of

tryptophans and yet, properties such as aromaticity and ring shape remain invariant.

More importantly, the magnitude (~2.1 D for tryptophan and 2.2 D for

1-methyltryptophan) and direction of the dipole moment are not altered (see

Fig. 14.7a) [46]. We therefore explored the membrane organization and dynamics
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Fig. 14.6 Effect of pair-wise substitution of tryptophans in gramicidin. (a) To delineate the role of
multiple tryptophans in the organization and dynamics of the gramicidin channel, the positions of

tryptophans (four in number) in gramicidin A and the pair-wise substituted double tryptophan

analogs (two in number) are shown. Tryptophan residues at positions 9 and 11 are denoted as the

“inner pair”, while tryptophan residues at positions 13 and 15 are denoted as the “outer pair”. The

analog in which the inner pair of tryptophans are substituted by phenylalanine is denoted as

Phe9,11gA, while the analog in which the outer pair of tryptophans are substituted is termed

Phe13,15gA. (b) Intensity-normalized fluorescence emission spectra of the two pair-wise

substituted double tryptophan analogs, Phe13,15gA (_____) and Phe9,11gA (---) in membranes. (c)
Effect of changing excitation wavelength on the wavelength of maximum emission for Phe13,15gA

(■) and Phe9,11gA (●). The magnitude of REES corresponds to 18 and 9 nm for the inner

(Phe13,15gA) and the outer (Phe9,11gA) pairs, respectively. The lines joining data points are

provided merely as viewing guides (Adapted with permission from ref. [25] (copyright (2014)

American Chemical Society))
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of the N-methylated tryptophan analog of gramicidin, i.e., tetramethyltryptophan

gramicidin (TM-gramicidin), a tryptophan analog of gramicidin in which all four

tryptophans are replaced by 1-methyltryptophan residues. The normalized fluores-

cence emission spectra of gramicidin and TM-gramicidin are shown in Fig. 14.7b.

The figure shows that while tryptophans in the channel form of gramicidin typically

exhibit an emission maximum of 333 nm, the emission maximum of

TM-gramicidin is significantly red shifted to 340 nm. The red-shifted emission

maximum of TM-gramicidin is indicative of the average environment experienced

by 1-methyltryptophans in TM-gramicidin due to conformational differences of

gramicidin and TM-gramicidin. Interestingly, red-shifted emission maximum is
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Fig. 14.7 Monitoring the effect of hydrogen bonding of the indole group of tryptophan in

gramicidin. (a) Chemical structures of indole (right) and 1-methylindole (left) with the direction

of the dipole moments are shown. The -NH group in indole can form hydrogen bond with the lipid

carbonyl groups or the interfacial water molecules, while in 1-methylindole this ability is lost due

the substitution with a methyl group. Importantly, aromaticity and ring shape are maintained in

1-methylindole and the dipole moment (shown as a vector) is similar in direction and magnitude

(~2 D) to indole. The analog in which all four tryptophans are replaced by 1-methyltryptophan is

designated as tetramethyltryptophan gramicidin (TM-gramicidin). (b) The intensity-normalized

fluorescence emission spectra of gramicidin (_____), and TM-gramicidin (- - -) in membranes are

shown. The inset shows that the fluorescence intensity of TM-gramicidin (right bar) is higher

relative to gramicidin at their respective emission maximum. (c) Effect of changing excitation

wavelength on the wavelength of maximum emission for gramicidin (●), and TM-gramicidin (~)

in membranes. The lines joining data points are provided merely as viewing guides. The inset

shows the magnitude of REES, which corresponds to the shift in emission maximum when the

excitation wavelength was changed from 280 to 307 nm, is higher for gramicidin (left bar)
(Adapted from ref. [26] with permission from Elsevier)
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characteristic of the nonchannel conformation of gramicidin [7]. The inset in

Fig. 14.7b shows that TM-gramicidin displays considerable increase in fluores-

cence intensity relative to gramicidin when excited at 280 nm. This could be due to

the nonchannel conformation adopted by TM-gramicidin (independently shown by

CD measurements) [26], since the conformational change of gramicidin in mem-

branes from the nonchannel to channel form is accompanied by a reduction in

fluorescence intensity [7]. The nonchannel conformation is characterized by

increased fluorescence due to the relatively nonpolar environment in which the

tryptophans are localized in the nonchannel conformation and the release of

quenching due to absence of aromatic-aromatic interaction between the

fluorophores at positions 9 and 15 observed in the channel conformation

[25, 26]. Higher fluorescence quantum yield of 1-methyltryptophan could also

contribute to increased fluorescence of TM-gramicidin. Figure 14.7c shows REES

of gramicidin and TM-gramicidin. The figure shows that the emission maximum of

gramicidin is characteristically shifted from 333 to 340 nm in response to a change

in excitation wavelength from 280 to 307 nm, amounting to REES of 7 nm. In

contrast, TM-gramicidin, exhibits a relatively modest REES of 3 nm (emission

maximum shift from 340 to 343 nm) upon change in excitation wavelength from

280 to 307 nm, reminiscent of nonchannel conformation (see Fig. 14.3b) [7]. These

results clearly show the importance of tryptophan hydrogen bonding in maintaining

the channel conformation of gramicidin in particular and ion channels in general. In

addition, these results offer the possibility that fluorescence of 1-methyltryptophan

could be effectively used as a tool to explore the hydrogen bonding ability of

tryptophans in membrane proteins and peptides.

14.6 Conclusions and Future Perspectives

In this review, we have focused on the application of fluorescence-based

approaches to gain insight into conformational plasticity of the ion channel peptide

gramicidin. Since gramicidin shares common structural motifs with more complex

ion channels, the results described in this review could be useful to study confor-

mations of more complex ion channels. This review is not meant to be an exhaus-

tive in nature. Rather, we have provided representative applications to illustrate a

specific approach that would provide novel conformational insight. In case of

multitryptophan proteins, analysis of fluorescence data could be complicated due

to the complexity of fluorescence processes in such systems and lack of specific

information. Site-specific incorporation of extrinsic fluorescent probes, accom-

plished by using unnatural amino acid mutagenesis [47, 48], could help avoid this

complication.

It should be mentioned here that although we have focused mainly on ion

channel peptide in this review, these fluorescence-based approaches are applicable

to all membrane proteins. A particularly attractive application would be to monitor

conformational plasticity of G protein-coupled receptors (GPCRs) using
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fluorescence-based approaches. GPCRs are involved in signal transduction from

outside the cell to the cellular interior and constitute the largest family of current

therapeutic targets [49]. GPCRs display remarkable structural plasticity, necessary

for the functional diversity exhibited by them [50]. Unraveling conformational

choices of GPCRs using fluorescence-based approaches therefore would be useful

in deciphering GPCR function.
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