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Abstract Brain spectrin enjoys overall structural and se-
quence similarity with erythroid spectrin, but less is known
about its function. We utilized the fluorescence properties of
tryptophan residues to monitor their organization and dynam-
ics in brain spectrin. Keeping in mind the functional relevance
of hydrophobic binding sites in brain spectrin, we monitored
the organization and dynamics of brain spectrin bound to
PRODAN. Results from red edge excitation shift (REES) in-
dicate that the organization of tryptophans in brain spectrin is
maintained to a considerable extent even after denaturation.
These results are supported by acrylamide quenching experi-
ments. To the best of our knowledge, these results constitute
the first report of the presence of residual structure in urea-
denatured brain spectrin. We further show from REES and
time-resolved emission spectra that PRODAN bound to brain
spectrin is characterized by motional restriction. These results
provide useful information on the differences between ery-
throid spectrin and brain spectrin.

Keywords Brain spectrin . REES . Fluorescence quenching .
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Introduction

Spectrin is a major cytoskeletal protein lining the erythroid
membrane and acts as a scaffold for other cytoplasmic protein
association [1–3]. The elasticity of the membrane bilayer is
modulated by the complex network composed of spectrin and
other cytoskeletal proteins. In evolutionary terms, spectrin
evolved with metazoan organisms to fulfill the requirement
of structures that would strengthen cellular adhesion and sta-
bilize the plasma membrane against the force of movement
[4]. Interestingly, spectrin is responsible for maintenance of
the phase-state asymmetry in erythrocyte membranes [5] and
exhibits chaperone-like activity [6].

Spectrin is a heterodimer composed of two subunits α and
β (with mol. wts. of 280 and 246 kDa, respectively). The two
subunits share 30 % identity and are aligned in an antiparallel
side-to-side orientation to form a flexible and highly elongat-
ed, worm-like, rod-shaped heterodimer with hydrophobic
stretches, and the amino and carboxy termini are oriented
toward the ends of the rods [3]. The primary sequence of
spectrin is characterized by a series of contiguous motifs
called ‘spectrin repeats’ (typically 106 amino acid repeating
sequences) that are representative of all members of the
spectrin family of proteins [7]. It has been proposed that these
repeats could have been generated by gene duplication [8].
Dimeric spectrin has a number of tryptophan residues distrib-
uted over the entire molecule, with 42 tryptophans in each of
the α and β subunits [9, 10]. The spectrin repeats are charac-
terized by a strongly conserved tryptophan at the 45th position
and partially conserved tryptophan at the 11th position. A
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careful analysis reveals that there are 41 tryptophans in 23
repeat motifs in the α subunit and 35 tryptophans in 17 repeat
motifs in the β subunit of the spectrin dimer. The importance
of the repeat motifs with respect to tryptophans is apparent
when one considers the fact that more than 90 % of the total
tryptophans in the spectrin dimer are found in these positions
(repeat motifs). In addition, some of the conserved trypto-
phans have been implicated in folding of the spectrin domains
[11] and in maintaining thermodynamic stability [12, 13]. The
interesting observation that tryptophans are distributed over
the entire spectrin dimer and still are localized in conserved
positions in each domain makes them convenient fluorescent
reporters for exploring conformational changes in spectrin that
contribute to its elastic deformability exhibited in physiologi-
cal situations [12, 14, 15]. We have previously utilized the
intrinsic tryptophan fluorescence of erythroid spectrin to mon-
itor its conformational flexibility and interaction with micellar
detergents [14–16]. A substantial number of spectrin trypto-
phans are close to hydrophobic patches that can bind hydro-
phobic ligands (such as fatty acids and phospholipids), there-
by inducing quenching of tryptophan fluorescence [17, 18].
The hydrophobic stretches in spectrin provide binding sur-
faces to the hydrophobic, polarity sensitive fluorescent probe
6-propionyl-2-dimethylaminonaphthalene (PRODAN) [19].
We have previously shown that PRODAN binds to erythroid
spectrin with a high affinity [20, 21].

Non-erythroid (brain) spectrin has a high degree of sequence
homology with erythroid spectrin [22]. Brain spectrin, like ery-
throid spectrin, forms rod-shaped heterodimers in an antiparallel
side-to-side orientation. Similar to erythroid spectrin, non-
erythroid (brain) spectrin also contains conserved tryptophan
residues at 43rd and 53rd positions in the α subunit and 17th
position at the β subunit. In spite of the overall sequence and
structural similarity between erythroid spectrin and brain
spectrin, less is known about the function of brain spectrin. Brain
spectrin in the axonal cytoskeleton has been implicated to be
necessary for the stability of nascent sodium channel clusters
[23]. Both erythroid spectrin and brain spectrin bind to mem-
brane phospholipids [24]. However, the binding of anionic
phospholipids is reported to be stronger (higher affinity) in case
of brain spectrin [25]. Although the amino terminal region of the
α subunit and carboxy terminal region of the β subunit of non-
erythroid (brain) spectrin exhibit ~60 and 70 % similarity with
corresponding regions of erythroid spectrin [26, 27], the two
spectrin isoforms appear different in their structure and function.
Crystal structure and phage-displayed single-chain variable frag-
ment analysis show that the tetramerization site or the self-
associating domain of brain spectrin is different from that of
erythroid spectrin [28, 29]. This is further supported by the
observation that the heterodimer of brain spectrin forms tetramer
that is ~15 times stronger than the corresponding tetramer
formed by erythroid spectrin [30]. Brain spectrin is more rigid
and thermally stable than erythroid spectrin [31]. We have

recently reported certain mechanistic differences in binding of
the hydrophobic fluorescent probe PRODAN to erythroid
spectrin and brain spectrin, as revealed by analysis of thermo-
dynamic parameters [21].

In this work, we have explored the organization and dy-
namics of tryptophan residues in brain spectrin in native and
urea-denatured conditions utilizing a variety of fluorescence
approaches, keeping in mind their role in the structure and
function of brain spectrin. In addition, in the overall context
of the relevance of hydrophobic binding sites in brain spectrin,
we monitored the organization and dynamics of PRODAN
bound to brain spectrin using similar approaches. Our results
show that the motional restriction experienced by tryptophans
in brain spectrin is present to a considerable extent even in
denatured state, implying that some of the structural and dy-
namic features of brain spectrin are retained under such con-
dition. These observations therefore bring up the interesting
possibility that brain spectrin preserves residual structures
even after denaturation. These results assume relevance in
the context of the role of tryptophans in the stability, folding
and function of brain spectrin.

Experimental

Materials

Sepharose CL-4B column, Tris, KCl, phenylmethylsulfonyl
fluoride (PMSF), dithiothreitol (DTT), EDTA, EGTA, imidaz-
ole, MgCl2, NaCl, ammonium sulfate and ultrapure grade urea
were obtained from Sigma Chemical Co. (St. Louis, MO).
PRODAN was obtained from Molecular Probes/Invitrogen
(Eugene, OR). Concentration of PRODAN in methanolic
stock solution was calculated from its molar extinction coeffi-
cient (ε) of 18,000 M−1 cm−1 at 360 nm [19]. Ultrapure grade
acrylamide was from Invitrogen/Life Technologies. The purity
of acrylamide was checked from its absorbance using its molar
extinction coefficient (ε) of 0.23 M−1 cm−1 at 295 nm and
optical transparency beyond 310 nm [32]. All other chemicals
used were of the highest purity available. Solvents used were
of spectroscopic grade.Water was purified through a Millipore
(Bedford, MA) Milli-Q system and used throughout.

Isolation and Purification of Brain Spectrin

Sheep brains of freshly sacrificed animals were obtained from a
local slaughterhouse for purification of brain spectrin following
the guidelines of the Institutional Animal and Bioethics Commit-
tee of Saha Institute of Nuclear Physics. Brain spectrin in its
tetrameric formwas purified fromovine brain as described earlier
[21]. All the steps were carried out between 0 and 4 °C and all
buffers contained PMSF. Fresh ovine brain was homogenized in
10 mM Tris buffer (pH 7.0) containing 1 mM EGTA, 5 mM
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EDTA, 10mM imidazole, 0.2 mMDTTand 0.2 mMPMSF and
centrifuged for 1 h at 15,000×g. The pellet obtained was further
homogenized in 10 mM Tris (pH 8.0) containing 5 mMMgCl2,
1 mM EGTA, 0.6 mM EDTA, 0.2 mM DTT, and 0.2 mM
PMSF. The salt concentration of the solution was adjusted to
0.6 M NaCl from stock NaCl solution and was stirred for 1 h
at 4 °C; followed by centrifugation for 45 min at 15,000×g. The
supernatant was passed through cheese cloth. Crude brain
spectrin was obtained after further centrifugation at 12,000×g at
4 °C. Purified brain spectrin was obtained after concentrating
with 50 % ammonium sulfate precipitation followed by Sepha-
roseCL-4B column chromatography and stored in 1mMsodium
phosphate (pH 8.0) buffer containing 20mMKCl, 0.2 mMDTT
and 0.2 mM PMSF. The purity of the preparation was checked
on 8%SDS-PAGEunder reducing condition. Before performing
any fluorescence experiment, brain spectrin was dialyzed against
10 mM Tris buffer (pH 7.8) containing 20 mMKCl. Concentra-
tion of brain spectrin was determined by Bradford method with
bovine serum albumin as a standard [33].

Sample Preparation and Steady State Fluorescence
Measurements

Freshly prepared brain spectrin was maintained in 10 mMTris
buffer (pH 7.8) containing 20 mM KCl for all fluorescence
measurements. Brain spectrin was denatured in 8 M urea by
incubating in urea solution for 2 h prior to spectroscopic mea-
surements. For studies on PRODAN bound to brain spectrin,
PRODAN was incubated for 3 h with 2.5 times molar excess
of brain spectrin. All experiments were carried out at room
temperature (~23 °C).

Steady state fluorescence measurements were performed
with a Hitachi F-7000 spectrofluorometer (Tokyo, Japan)
using 1 cm path length quartz cuvette. Excitation and emission
slits with a nominal bandpass of 3 nm were used for all mea-
surements. All spectra were recorded using the correct spec-
trum mode. Background intensities of samples in which
fluorophores were omitted were negligible in most cases and
were subtracted from each sample spectrum to cancel out any
contribution due to the solvent Raman peak and other scatter-
ing artifacts. The spectral shifts obtained with different sets of
samples were identical in most cases, or were within ± 1 nm of
the ones reported. Fluorescence anisotropy measurements
were performed using a Hitachi polarization accessory. An-
isotropy values were calculated from the equation [34]:

r ¼ IVV−GIVH
IVV þ 2GIVH

ð1Þ

where IVV and IVH are the measured fluorescence intensities
(after appropriate background subtraction) with the excitation
polarizer vertically oriented and emission polarizer vertically
and horizontally oriented, respectively. G is the grating

correction factor and is the ratio of the efficiencies of the
detection system for vertically and horizontally polarized
light, and is equal to IHV/IHH. All experiments were performed
with multiple sets of samples and average values of anisotropy
are shown in the figures.

Fluorescence Quenching Measurements

Acrylamide quenching experiments of tryptophan fluores-
cence were carried out as described earlier [14] by measuring
fluorescence intensity after serial addition of small aliquots of
freshly prepared stock solution of 2M acrylamide in water to a
stirred sample followed by incubation for 3 min in the sample
compartment in dark. The excitation wavelength used was
295 nm, and emission was monitored at 338 nm. The fluores-
cence intensities obtained were corrected for dilution. Correc-
tions for inner filter effect were made using the following
equation [34]:

F ¼ Fobsantilog Aex þ Aemð Þ=2½ � ð2Þ

where F is the corrected fluorescence intensity and Fobs is the
background subtracted fluorescence intensity of the sample
(also corrected for dilution). Aex and Aem are the measured
absorbance at the excitation and emission wavelengths, re-
spectively. Quenching data were analyzed by fitting to the
Stern-Volmer equation [34]:

Fo=F ¼ 1þ KSV Q½ � ð3Þ

where Fo and F are the fluorescence intensities in the absence
and presence of the quencher (acrylamide), [Q] is the molar
quencher concentration and KSV is the Stern-Volmer
quenching constant. In order to quantitate the fraction of
fluorophores accessible to the quencher (fa), the quenching
data were also analyzed using a modified equation by Lehrer
[35]:

Fo=ΔF ¼ 1= Ka f a Q½ �ð Þ þ 1= f a ð4Þ

whereΔF = Fo – F, Ka is the Stern-Volmer quenching constant
for the accessible fraction and fa is the fraction of initial fluo-
rescence accessible to the quencher.

Time-Resolved Emission Spectra (TRES) Measurements

Fluorescence lifetimes were calculated from time-resolved
fluorescence intensity decays using IBH 5000 F NanoLED
equipment (Horiba Jobin Yvon, Edison, NJ) with Data Station
software in the time-correlated single photon counting mode
as described earlier [36]. A pulsed light-emitting diode (LED)
(NanoLED-16) was used as an excitation source. This LED
generates optical pulse at 337 nm of pulse duration 1.2 ns and
is run at 1 MHz repetition rate. LED profile (instrument
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response function) was measured at the excitation wavelength
using Ludox (colloidal silica) as the scatterer. To optimize the
signal-to-noise ratio, 10,000 photon counts were collected in
the peak channel. All experiments were performed using
emission slits with a bandpass of 4 nm or less. The sample
and the scatterer were alternated after every 5 % acquisition to
ensure compensation for any shape and timing drifts that
could occur during the period of data collection. This arrange-
ment also prevents any prolonged exposure of the sample to
the excitation beam, thereby avoiding any possible
photodamage to the fluorophore. Data were stored and ana-
lyzed using DAS 6.2 software (Horiba JobinYvon, Edison,
NJ). Fluorescence intensity decay curves so obtained were
deconvoluted with the instrument response function and ana-
lyzed as a sum of exponential terms:

F tð Þ ¼ Σiαiexp −t=τið Þ ð5Þ

where F(t) is fluorescence intensity at time t and αi is a pre-
exponential factor representing the fractional contribution to
the time-resolved decay of the component with a lifetime τi
such that Σiαi=1. Decay parameters were recovered using a
nonlinear least squares iterative fitting procedure based on the
Marquardt algorithm. TRES was generated as described ear-
lier [36]. For this, a series of fluorescence decays were ac-
quired over a range of emission wavelengths (400–500 nm)
across the emission spectrum, using a constant excitation
wavelength of 337 nm. All the decay curves were then indi-
vidually fitted as a sum of exponential terms as discussed
above. The net result of such an analysis was a set of
deconvoluted intensity decays at various emission wave-
lengths, i.e., a three-dimensional data set of counts vs. time
vs. emission wavelength. This three-dimensional data set was
sliced orthogonally to the time axis to produce two-
dimensional spectra of counts vs. emission wavelength in or-
der to visualize how the emission spectrum evolves during the
fluorescence lifetime. This approach has the advantage that
convolution distortion is avoided because each decay curve
is individually deconvoluted before the construction of the
final TRES plot.

Circular Dichroism (CD) Measurements

Far-UV CD measurements were carried out at room tempera-
ture (~23 °C) on a BioLogic Science Instruments (France)
MOS-450 spectropolarimeter. Spectra were measured in a
quartz optical cell with a pathlength of 0.1 mm and recorded
in 1 nm wavelength increments and band width of 5 nm. The
scan rate was 0.5 nm/s and each spectrumwas the average of 5
scans. All spectra were corrected for background by subtrac-
tion of appropriate blanks without brain spectrin. The spectra
were subjected to a moderate degree of noise-reduction anal-
ysis by smoothing making sure that the overall shape of the

spectrum remains unaltered. Data are represented as mean
residue ellipticities and calculated using the equation:

θ½ � ¼ θobs= 10Clð Þ ð6Þ

where θobs is the observed ellipticity in mdeg, l is the path length
in cm, and C is the concentration of peptide bonds in mol/L.

Results

Fluorescence and Circular Dichroism Signatures
of Urea-Denatured Brain Spectrin

Figure 1 shows the fluorescence emission spectra of brain
spectrin in native and urea denatured states. As shown in the
figure, tryptophans in native brain spectrin exhibit an emission
maximum at 338 nm, similar to emission maximum of ery-
throid spectrin [14]. The figure also shows that the fluores-
cence emission spectrum of brain spectrin denatured with urea
displays a red shifted emission maximum and is at 350 nm.
This red shift can be attributed to increased exposure of tryp-
tophans in brain spectrin to water upon urea denaturation.
Interestingly, tryptophan in water (i.e., fully exposed) exhibits
an emission maximum at 355 nm [37]. The emission maxi-
mum of 350 nm for denatured brain spectrin therefore indi-
cates that the tryptophans are shielded from bulk water to a
certain extent (see later), even when denatured in 8 M urea.

The corresponding CD spectra of native and denatured
brain spectrin are shown in Fig. 2. The backbone CD spectrum
of native brain spectrin is characteristic of a protein with pre-
dominantly α-helical structure, in agreement with earlier
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Fig. 1 Tryptophan fluorescence emission spectra of brain spectrin in
native and urea-denatured conditions. Representative fluorescence
emission spectra of brain spectrin in native (—) and urea denatured (−
− −) states. The concentration of native and urea denatured brain spectrin
were 0.6 and 0.4 μM, respectively. The excitation wavelength was
295 nm. Brain spectrin was denatured in 8 M urea. The fluorescence
spectra are intensity normalized at the emission maximum. See
Experimental for other details
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report [38].When denatured in urea, the CD spectrum of brain
spectrin displayed considerable loss of helicity, indicating loss
of secondary structure elements.

Red Edge Excitation Shift of Brain Spectrin in Native
and Urea-Denatured States

Red edge excitation shift (REES) is operationally defined as
the shift in the wavelength of maximum fluorescence emis-
sion toward higher wavelengths, caused by a shift in the ex-
citation wavelength toward the red edge of the absorption
band. The dipolar relaxation time of the solvent shell around
a polar fluorophore becomes comparable to or longer than its
fluorescence lifetime inmotionally restricted environment and
this gives rise to photoselection of differentially relaxed pop-
ulation of fluorophores upon excitation toward the red edge
[39–44]. The fact that the fluorophore in REESmeasurements
merely acts as a reporter group and allows to monitor the
mobility parameters of the environment itself (represented
by the relaxing solvent molecules) adds to its uniqueness. This
attractive aspect of REES has proved to be a convenient tool to
monitor organization and dynamics of probes and proteins in
membranes and membrane-mimetic environments [45–52],
and tryptophans in soluble proteins [53–56].

The shifts in the maxima of fluorescence emission1 of brain
spectrin as a function of excitation wavelength are shown in

Fig. 3a. Upon excitation at 280 nm, tryptophans in native
brain spectrin exhibited an emission maximum at 338 nm
(see above; Fig. 1). As the excitation wavelength is changed
from 280 to 307 nm, the emission maximum of native brain
spectrin is shifted from 338 to 344 nm, which corresponds to a
REES of 6 nm (see Fig. 3b). It was practically difficult to
monitor any further red shift when native brain spectrin was
excited beyond 307 nm due to very low signal to noise ratio,
and artifacts due to the solvent Raman peak that sometimes
remained even after background subtraction. Such type of
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Fig. 2 Secondary structure of brain spectrin in native and urea-denatured
conditions. Far-UV CD spectra of brain spectrin in native (—) and urea
denatured (- - -) states. The concentration of brain spectrin was 0.2 μM.
CD data below 215 nm were not recorded for urea-denatured brain
spectrin due to high absorbance of urea in this wavelength range. All
other conditions are as in Fig. 1. See Experimental for other details

1 We have used the term maximum of fluorescence emission in a some-
what broader sense here. In every case, we have monitored the wave-
length corresponding to maximum fluorescence intensity, as well as the
center of mass of the fluorescence emission, in the symmetric part of the
spectrum. In most cases, both these methods yielded the same wave-
length. In cases where minor discrepancies were found, the center of mass
of emission has been reported as the fluorescence maximum.
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Fig. 3 REES exhibited by brain spectrin in native and urea-denatured
conditions. a Effect of changing excitation wavelength on the wavelength
of maximum emission for native (●) and urea-denatured (♦) brain
spectrin. Lines joining the data points are provided merely as viewing
guides. b The magnitude of REES, which corresponds to the shift in
emission maximum when the excitation wavelength was changed from
280 to 307 nm, exhibited by native and denatured states of brain spectrin
are shown. REES of native and denatured states of erythroid spectrin
under comparable conditions (taken from ref. [14]) are also shown for
comparison. All other conditions are as in Fig. 1. See Experimental for
other details
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shift in the wavelength of emission maximum with corre-
sponding change in excitation wavelength is representative
of REES and indicates that the tryptophans in native brain
spectrin experience motionally restricted environment. Since
brain spectrin is a multi-tryptophan protein, REES in this case
is indicative of the average environment experienced by the
tryptophans. Nonetheless, such a result would imply that the
regions surrounding a sub-population of tryptophans in brain
spectrin offer considerable restriction to the reorientational
motion of the solvent (water) dipoles in the excited state. In-
terestingly, it has been previously reported that some of the
tryptophans in brain spectrin are shielded from the bulk sol-
vent [11, 13]. This population of tryptophans is more likely to
contribute to the observed REES of brain spectrin. In addition,
many of these tryptophans are at or in the vicinity of hydro-
phobic patches in brain spectrin [57] which can bind hydro-
phobic ligands and the estimated apparent dielectric constant
of the hydrophobic binding site(s) are low [21]. The low di-
electric environment of these hydrophobic patches are gener-
ally characterized by restricted solvent molecules, rendering
these regions suitable for displaying REES and other
wavelength-selective effects [40,43,44; see later]. Interesting-
ly, the magnitude of REES exhibited by tryptophans in native
brain spectrin is higher compared to tryptophans in erythroid
spectrin (see Fig. 3b). This is indicative of possible difference
in the microenvironment around the tryptophans in erythroid
spectrin compared to brain spectrin.

Interestingly, REES effects are still observed in case of
denatured brain spectrin. As the excitation wavelength is
changed from 280 to 307 nm, the emission maximum of the
tryptophans in denatured brain spectrin displays a shift from
350 to 353 nm, which corresponds to a REES of 3 nm (see
Fig. 3b). Exposure of the tryptophans in denatured state to
bulk solvent leads to fast solvent relaxation, and therefore
tryptophans in denatured proteins generally do not exhibit
REES [53, 58]. However, we have previously reported that
in rare cases (such as erythroid spectrin [14] and α-
lactalbumin [55]) tryptophans in denatured proteins could
show REES, thereby implying the presence of residual struc-
tures in these proteins that remain even after denaturation.
This result, along with the emission maximum of 350 nm
for denatured brain spectrin, indicates that the tryptophan mi-
croenvironment in brain spectrin maintains some of its orga-
nization (residual structure) even after denaturation. To the
best of our knowledge, these results constitute the first report
of the presence of such residual structure in denatured brain
spectrin. These results gain further support from analysis of
quenching of tryptophan fluorescence in brain spectrin by the
water soluble quencher acrylamide (discussed below).

In addition to the shift in emissionmaximum upon red edge
excitation, fluorescence anisotropy is known to be dependent
on excitation wavelength in motionally restricted media [39].
The solvent relaxed state of the fluorophore (photoselected

progressively toward the red edge of excitation) exhibits a
decreased rotational rate, thereby increasing anisotropy, i.e.,
an increase in anisotropy is generally observed with increase
in excitation wavelength. This is attributed to the strong dipo-
lar interactions with the surrounding solvent molecules. This
is illustrated in Fig. 4. The figure shows that the anisotropy of
tryptophans in brain spectrin in the native state exhibited an
increase of ~42 % upon altering the excitation wavelength
from 295 to 305 nm. The corresponding increase in anisotropy
for denatured brain spectrin when the excitation wavelength
was increased from 295 to 305 nm was less (~22 %). Such
characteristic increase in anisotropy upon red edge excitation
for peptides and proteins containing tryptophans, especially in
restricted environments has been previously reported [14, 53,
55]. Another possible reason for the increase in anisotropy at
the red edge of excitation could be the reduced efficiency of
self energy transfer (homo-FRET) among tryptophan resi-
dues, sometimes referred to as Weber’s red edge effect [59,
60].

Acrylamide Quenching of Tryptophan Fluorescence:
Evidence of Residual Structure in Urea-Denatured State

Acrylamide quenching of tryptophan fluorescence represents
an extensively used approach to monitor the solvent accessi-
bility of tryptophans in proteins [61]. A representative Stern-
Volmer plot of acrylamide quenching of tryptophans in brain
spectrin in native and denatured state is shown in Fig. 5a. The
accessibility, i.e., the degree of solvent exposure of trypto-
phans in brain spectrin, is gleaned from the slope (KSV) of
the plot. The quenching parameters obtained by analyzing
the Stern-Volmer plot are shown in Table 1. The Stern-
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Volmer constant (KSV) for acrylamide quenching of native
brain spectrin was 4.41 M−1. The value of KSV was found to
increase for urea denatured brain spectrin to 10.59 M−1, indi-
cating increased exposure of tryptophans upon denaturation.
However, this value of KSV is significantly low in comparison
to the value of KSV (13.42 M−1) for fully exposed tryptophans
as in the case of the model compound N-acetyl-L-
tryptophanamide (NATA) in 8M urea (see Table 1; [14]). This
result indicates that even when denatured with 8 M urea, tryp-
tophans in brain spectrin are not fully exposed and are
shielded from the bulk aqueous environment, in agreement
with our REES results (see Fig. 3). These results are further
supported by Lehrer analysis [35] of the quenching data

(shown in Fig. 5b). The higher accessibility of tryptophans
in the denatured state of brain spectrin is further supported
by Lehrer analysis, which shows that ~87 % of the tryptophan
fluorescence was accessible in this state (see Table 1). Al-
though these results indicate that tryptophans in brain spectrin
are still not accessible even when denatured, the extent of
tryptophan inaccessibility is higher in erythroid spectrin
[14]. This could be due to differential stability and folding of
brain spectrin and erythroid spectrin.

REES and TRES of PRODAN Bound to Brain Spectrin

Some of the tryptophan residues in brain spectrin are localized
at or in the vicinity of hydrophobic patches which can bind
ligands such as pyrene, fatty acids and phospholipids and cause
quenching of tryptophan fluorescence [21, 57]. The hydropho-
bic patches are useful in the interaction of brain spectrin with
membranes. In order to explore the microenvironment of these
functionally important hydrophobic sites characterized by low
polarity [21], we carried out REES measurements utilizing the
fluorescence of the hydrophobic, polarity-sensitive probe
PRODAN (see inset in Fig. 6a) bound to brain spectrin. We
have previously shown that PRODAN binds to brain spectrin
with a high affinity (apparent Kd~0.16 μM) [21].

A large change in the dipole moment of the fluorophore
upon excitation, which causes the solvent dipoles to reorient
in an energetically favorable manner in response to the altered
dipole moment in the excited state, is an important require-
ment for a fluorophore to be able to exhibit REES [43].
PRODAN fluorescence is very sensitive to the polarity of
the environment and its dipole moment changes by ~5–8 D
upon excitation [62, 63]. A change in dipole moment of this
magnitude, coupled with its hydrogen bonding capability [63]
makes PRODAN an ideal probe for REESmeasurements. The
shifts in the maxima of fluorescence emission of PRODAN
bound to brain spectrin as a function of excitation wavelength
are shown in Fig. 6. PRODAN shows an emission maximum
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Fig. 5 Solvent exposure of tryptophans in brain spectrin in native and
denatured conditions. Representative data for (a) Stern-Volmer and (b)
Lehrer analysis of acrylamide quenching of native (●) and denatured (♦)
states of brain spectrin. Fo is the tryptophan fluorescence in the absence of
quencher (acrylamide), F is the corrected tryptophan fluorescence in the
presence of quencher, and ΔF = Fo − F. The concentration of brain
spectrin was 0.2 μM. The excitation wavelength was 295 nm, and
emission was monitored at 338 nm in all cases. See Experimental for
other details

Table 1 Acrylamide quenching of tryptophan fluorescence of brain
spectrina

Condition KSV
b (M−1) fa

c

Native 4.41±0.04 0.65±0.02

Denatured 10.59±0.01 0.87±0.03

NATA (8 M) 13.42±0.30d

a Concentration of brain spectrin was 0.2 μM
bCalculated using Eq. (3). The quenching parameter shown represents
means ± SE of at least three independent measurements while quenching
data shown in Fig. 5a are from representative experiments
c Calculated using Eq. (4). The quenching parameter shown represents
means ± SE of at least three independent measurements while quenching
data shown in Fig. 5b are from representative experiments
d From ref. [14]
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of 520 nm in water [20] which exhibits a blue shift of 90 nm
when bound to brain spectrin indicating the nonpolar nature of
the binding site. Figure 6 shows that when excited at 360 nm,
PRODAN bound to brain spectrin exhibits a blue shifted
emission maximum at 430 nm. As the excitation wavelength
is changed from 360 to 410 nm, the emission maxima of
PRODAN bound to brain spectrin is shifted from 430 to
444 nm, which amounts to a relatively large REES of
14 nm. This indicates that PRODAN bound to brain spectrin
is in a motionally restricted environment. This would imply
that the PRODAN-binding site in brain spectrin offers consid-
erable restriction to the reorientational motion of the solvent

dipoles around the excited state fluorophore. Figure 6b shows
that the magnitude of REES experienced by PRODAN bound
to brain spectrin is larger than when bound to erythroid spectrin.
This is indicative of the difference in nature of the hydrophobic
binding site in erythroid spectrin and brain spectrin. This is in
overall agreement with the difference in binding affinity of
PRODAN with brain spectrin and erythroid spectrin (binding
is tighter with brain spectrin) [21].

Figure 7 shows the time-resolved emission spectra (TRES)
of PRODANbound to brain spectrin at early (up to 22.4 ns after
excitation), and late (up to 33.6 ns after excitation time points.)
A red shift in the emission spectrum of PRODAN with time is
evident from the figure. For the early time point spectrum, the
emission maximum is at ~430 nm, which shifts to ~460 nm for
the late time point. In addition to static REES (Fig. 6), our
results show that PRODAN bound to brain spectrin exhibits a
dynamic change in emission maximum (‘dynamic REES’), i.e.,
there is a change in the emission spectra of bound PRODAN
during the fluorescence lifetime, indicative of relatively slow
solvent relaxation in the excited state.

Discussion

In this work, we have explored the environment of tryptophan
residues in brain spectrin in native and urea-denatured states
utilizing a battery of fluorescence approaches. Since trypto-
phan residues are localized in chosen positions in brain
spectrin sequence in the 106 long amino acid repeat units,
and are conserved to a large extent, they are believed to be
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important for the function of the protein. We report REES of
6 nm for tryptophans in brain spectrin in the native state. The
exhibition of REES by tryptophans in native state brain
spectrin is indicative of an ordered environment and reflects
that the regions surrounding at least some of the tryptophans
in brain spectrin offer considerable restriction to the
reorientational motion of the solvent (water) dipoles around
the excited state tryptophans. This is in agreement with previ-
ous reports describing a population of tryptophans in brain
spectrin not being accessible to bulk solvent [11, 13]. This is
further supported by tryptophan accessibility observed using
acrylamide quenching. Interestingly, brain spectrin exhibits
REES of 3 nm even after denaturation, similar to denatured
erythroid spectrin [14]. This is clearly indicative of the distinct
structural and dynamic features of brain spectrin that are main-
tained to a considerable extent even after denaturation. These
results are reinforced by acrylamide quenching experiments in
which the accessibility of the tryptophans in brain spectrin
was assessed in native and denatured conditions.

It is generally believed that tryptophan residues in dena-
tured proteins do not exhibit REES since they are exposed to
bulk water characterized with fast relaxation [53, 58]. Our
present results show that brain spectrin belongs to the short
but growing list of proteins which show REES even when
denatured [14, 55]. An interesting common feature of these
proteins (which display REES evenwhen denatured) is that all
these proteins are characterized with hydrophobic stretches
and membrane binding. The relevance of these observations
may become clearer as we generate more data on this class of
proteins. Interestingly, it has been previously reported that
tryptophan residues can stabilize native-like structures in a
denatured protein [64].

In addition, we have monitored the organization and dy-
namics of PRODAN bound to brain spectrin. When bound to
brain spectrin, PRODAN exhibits REES of 14 nm indicating
that PRODAN is in an environment where its mobility is
considerably reduced. The motionally restricted environment
of PRODAN bound to brain spectrin is further supported by
time-resolved emission spectra characterized by dynamic
Stokes shift, which indicates relatively slow solvent relaxation
in the excited state. As mentioned earlier, PRODAN tends to
bind to hydrophobic patches in proteins due to its hydropho-
bicity, and such binding in case of brain spectrin offers con-
siderable restriction to the reorientational motion of the sol-
vent dipoles around the excited state fluorophore. These hy-
drophobic sites could play a pivotal role in membrane binding
function of brain spectrin [24, 25].

Our results merit comment in the context of the paucity in
literature on the comparison of the biophysical properties of ery-
throid and brain spectrin. A much larger body of literature exists
on erythroid spectrin compared to brain spectrin. Our REES
results show that the tryptophans are probably located in a more
ordered microenvironment in native brain spectrin compared to

erythroid spectrin. Previous thermal studies have shown that the
melting temperature for intact brain spectrin is higher than that of
erythroid spectrin [31, 65], implying tissue-specific functional
adaptability. Erythroid spectrin confers more elasticity required
for red blood cells compared to brain spectrin which lines the
postsynaptic contacts [66, 67] and appears stiffer and straighter,
as monitored by electron microscopy [65]. This is supported by
REES results of PRODAN bound to brain spectrin showed that
themicroenvironment around these regions offer more restriction
to solvent relaxation (Fig. 6).

The two forms of spectrin also show differences in their
urea-denatured forms. The accessibility of tryptophans to ac-
rylamide quenching is higher for brain spectrin compared to
the erythroid form in the urea-denatured state (see Table 1 and
ref. [14]). We recently reported an extensive study monitoring
the effects of denaturants, urea and guanidine hydrochloride,
on the two forms of spectrin [68]. These results show that
denaturation reaches a saturation in the presence of ~6–7 M
urea. Although urea can be dissolved in pure water up to
~10 M, we chose not to carry out experiments beyond 8 M,
since the saturating concentration drops after addition of pro-
tein, which leads to crystallization of urea. We also avoided
performing thermal unfolding measurements since a major
disadvantage of the method is that many proteins aggregate
at high temperatures.

There has been a growing realization that denatured pro-
teins often have a significant amount of residual structure
which plays a crucial role in folding and stability of proteins
[69–74]. Denatured states of proteins are of interest in protein
folding studies not only in the context of the energetics of
protein folding, but also for their potential contribution to
the understanding of the functional aspects of proteins. The
denatured state of a protein, which is a close in vitro approx-
imation to the nascent polypeptide chains synthesized on the
ribosomes, is the form recognized by chaperones. Such states
are also recognized by a variety of protease systems responsi-
ble for intracellular protein turnover and by protein complexes
that initiate transport across biological membranes.

In summary, our results provide novel information into the
organization and dynamics of tryptophans and hydrophobic
sites in brain spectrin which could be important in protein-
protein interaction, signal transduction and interaction of brain
spectrin with membranes. In addition, our results bring out
subtle, yet what could turn out to be relevant differences be-
tween erythroid spectrin and brain spectrin. We envision that
these results would be potentially useful in future efforts to
decipher brain spectrin function.
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