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New and Notable
Get Your kICS by Measuring
Membrane Protein Dynamics
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Akin to the puck on an ice hockey rink,
the lateral dynamics of a representative
membrane protein exhibits rich be-
havior (1). Depending on the interaction
with the hockey players and other obsta-
cles (membrane constituents), the puck
(protein) can dart around the ice (mem-
brane surface) or be stalled momen-
tarily (transient confinement zone). If
we watched the motion of a single
puck, we would need to watch many
hockey games before we might eventu-
ally work out the rules of the game. But
what if we could watch many games in
parallel? This is where the suite of im-
age correlation spectroscopy (ICS)
techniques and its newest member, k-
space image correlation spectroscopy
(kICS) comes in Abu-Arish et al. (2).

ICS and kICS are members of a fam-
ily of techniques which began with
fluorescence correlation spectroscopy
(3). Fluorescence fluctuation analysis
provides the statistical mechanical
foundation with correlations between
fluorescence fluctuations measured
relative to a given lag vector. Correla-
tions can be made as a function of
time (fixed space) called FCS (3), fluc-
tuations in space (fixed time) called ICS
(4), and space-time fluctuations called
STICS (5). The ergodic principle en-
sures equivalence between occupancy
fluctuations whether in time or space.
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In temporal ICS or TICS, one essen-
tially images in time (using a laser
scanning fluorescence confocal micro-
scope) many molecules in parallel as
they change positions from one image
to the next image. If the molecules do
not move between the first image and
the second image, the spatial correla-
tion between image one and image
two will be high. However, if move-
ment does occur between image one
and image two, there is a loss of spatial
correlation. By analyzing the correla-
tion between images collected at
different times, information on protein
motion could be obtained. This method
provides information from many mole-
cules without the need for tracking in-
dividual particles. A problem endemic
to all these methods is that fluctuations
in fluorescence are measured as
opposed to particle fluctuations which
are the desired quantities in evaluating
transport properties.

In kICS (6), images collected from a
time-series are first Fourier transformed
into k-space before image cross-corre-
lation is performed. This has two
distinct advantages over (real space)
ICS. First, fluctuations from photophy-
sics (e.g., cis-trans isomerization, (de)
protonation, reversible dark state
quenching, reversible photobleaching)
do not contribute to the determination
of transport coefficients (6). Second,
determination of the lateral point spread
function dimension is not required, un-
like conventional fluorescence fluctua-
tion approaches (6).

In this issue of the Biophysical Jour-
nal, the pioneer of ICS and kICS, Paul
Wiseman has teamed up with Asmahan
Abu-Arish, Elvis Pandzic, Julie Goepp,
Elizabeth Matthes, and John Hanrahan
(2) to gain new insights into the dy-
namics of a biomedically important
membrane protein, the cystic fibrosis
transmembrane conductance regulator.
Using the kICS technique, the authors
have provided evidence for two popula-
tions of cystic fibrosis transmembrane
conductance regulator (CFTR) mole-
cules, which differed in degree of
confinement and lateral motion on the
cell surface. Impressively, they were
able to extract information on the dy-
namics of CFTR inside domains,
CFTR dynamics outside (and between)
domains, fractional populations, and
degree of confinement (within do-
mains). ICS analysis delivered cluster
densities and mean number of mole-
cules per cluster.

The authors examined the effect of
cholesterol on dynamics and clustering
behavior of CFTR. Cholesterol has a
remarkable effect on membrane pro-
tein assembly, dynamics and function
(7–9). Depletion of cholesterol caused
the confined fraction and average num-
ber of CFTR molecules per cluster to
decrease, whereas increase in choles-
terol were found to be associated with
increase in clustering and increased
confined fraction. Interestingly, viral
infection was shown to increase clus-
tering further into larger platforms
with reduced CFTR mobility. These
observations and analyses suggest
that cholesterol-influenced membrane
domains play an important role in the
cell surface behavior and pathology
of CFTR.

Aside from the important new in-
sights into this anion channel, the re-
sults of this study revealed how
complex cell surface dynamics and
clustering can be measured using
powerful fluorescence microscopy
techniques. With these new methods
in hand, biophysicists can sit back,
relax and enjoy the hockey game.
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