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The linear ion channel peptide gramicidin represents an excellent model for exploring the principles underlying
membrane protein structure and function, especially with respect to tryptophan residues. The tryptophan
residues in gramicidin channels are crucial for the structure and function of the channel. In order to test the
importance of indole hydrogen bonding for the biophysical properties of gramicidin channels, we monitored
the effect of N-methylation of gramicidin tryptophans, using a combination of steady state and time-resolved
fluorescence approaches along with circular dichroism spectroscopy. We show here that in the absence of the
hydrogen bonding ability of tryptophans, tetramethyltryptophan gramicidin (TM-gramicidin) is unable to
maintain the single stranded, head-to-head dimeric channel conformation in membranes. Our results show
that TM-gramicidin displays a red-shifted fluorescence emission maximum, lower red edge excitation shift
(REES), and higher fluorescence intensity and lifetime, consistent with its nonchannel conformation. This is in
agreement with the measured location (average depth) of the 1-methyltryptophans in TM-gramicidin using
the parallax method. These results bring out the usefulness of 1-methyltryptophan as a fluorescent tool to
examine the hydrogen bonding ability of tryptophans in proteins and peptides. We conclude that changes in
the hydrogen bonding ability of tryptophans, along with coupled changes in peptide backbone structure induce
the loss of single stranded β6.3 helical dimer conformation. These results agree with earlier results from size-
exclusion chromatography and single-channel measurements for TM-gramicidin, and confirm the importance
of indole hydrogen bonding for the conformation and function of ion channels and membrane proteins.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Biological membranes represent complex two-dimensional, non-
covalent assemblies of a diverse variety of lipids and proteins. They
provide an identity to the cell and facilitate cellular communication
and information processing. Membrane proteins are workhorses of
the cellular machinery. About 30% of all proteins are predicted to be
membrane proteins and ~50% of all proteins are membrane proteins
for eukaryotic cells [1,2]. The crystallization efforts of membrane
proteins in their native conditions are often complicated, and pose
considerable challenge due to the intrinsic dependence of membrane
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protein structure on surrounding membrane lipids [3]. Approaches
based on NMR and fluorescence spectroscopy have proved useful in
elucidating the organization, topology and orientation of membrane
proteins and peptides [4,5]. An additional advantage of spectroscopic
approaches is that the information obtained is dynamic in nature,
necessary for understanding membrane protein function.

Transmembrane proteins and peptides have characteristic
stretches of amino acids capable of interacting with the membrane
bilayer and are reported to have a significantly higher tryptophan
content than soluble proteins [6]. Tryptophan residues are believed
to be crucial in the structure and function of membrane proteins
and peptides [7–12]. A major observation is that tryptophans in
membrane proteins and peptides are not uniformly distributed, but
tend to be localized toward the membrane interface. Interestingly,
the interfacial region in membranes is characterized by unique
motional and dielectric properties, distinct from both the bulk
aqueous phase and the hydrocarbon-like interior of the membrane
[12,13]. A unique feature of tryptophan is its ability to participate
in both hydrophobic and polar interactions. Among the naturally
occurring amino acids, tryptophan shows the highest tendency to
localize at the interface, based on partitioning of model peptides to
membrane interfaces. Besides aromaticity and ring shape, hydrogen
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bonding could play a role in the partitioning of the indole ring
[8,14,15]. The overall role of tryptophan residues in the structure
and function of membrane proteins and peptides is apparent from
the observation that substitution or deletion of tryptophans often
results in reduction or loss of their function [16–20].

The linear peptide gramicidin forms prototypical ion channels specific
for monovalent cations and has been extensively used to explore the
organization, dynamics, and function of membrane-spanning channels
[21,22]. Gramicidin is a multi-tryptophan peptide (Trp-9, 11, 13, and
15; see Fig. 1a) which serves as an excellent model for transmembrane
channels due to a number of reasons such as small size, ready availability
and the relative ease with which chemical modifications can be
performed. These special features make gramicidin unique among small
membrane-active peptides and provide the basis for its use to explore
the principles that govern the folding and function of membrane-
spanning channels [21–23]. Interestingly, gramicidin channels share
vital structural features involving ion selectivity with complex ion
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Fig. 1. (a) Amino acid sequence of gramicidin A highlighting the positions of the four tryptophan
this study, four tryptophan residues in gramicidin are replaced by 1-methyltryptophan resi
gramicidin showing the localization of tryptophan residues in themembrane bilayer. Tryptoph
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modified from Ref. [43].
channels such as KcsA potassium channels [24]. Gramicidin assumes a
wide range of environment-dependent conformations due to its unique
sequence of alternating L- and D-chirality. Two major conformations
adopted by gramicidin in various environments are: (i) the single
stranded β6.3 helical dimer (the ‘channel’ form), and (ii) the double
stranded intertwined helix (collectively known as the ‘nonchannel’
form) [22]. The amino terminal-to-amino terminal single-stranded
β6.3 helical dimer form is the thermodynamically preferred confor-
mation in membranes and membrane-mimetic media. In this confor-
mation, the tryptophan residues remain clustered at the membrane–
water interface [25–28]. Interestingly, the membrane interfacial
localization of tryptophan residues is absent in ‘nonchannel’ confor-
mations and the tryptophan residues are distributed along the
membrane axis [10,22,25]. Nonchannel conformations have been
shown to exist in membranes with polyunsaturated lipids [29], and in
membranes with increased acyl chain lengths under hydrophobic
mismatch conditions [30,31].
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Gramicidin has proved to be a powerfulmodel for elucidating the role
of tryptophan at the membrane–water interface for maintaining ion
channel structure and assembly [16,17,32–37]. The tryptophan residues
in gramicidin channels have previously been shown to be crucial for the
structure and function of the ion channel [16,17,32–35]. The importance
of tryptophans is apparent from previous observations that the cation
conductivity of the channel is reduced upon substitution of one or all of
the tryptophan residues by phenylalanine, tyrosine or naphthylalanine
[16,17,32], and also upon ultraviolet irradiation or chemical modification
of the tryptophans [35,38,39]. It has been previously shown that
gramicidins with Trp→ Phe or Tyr substitutions have greater difficulty
in formingmembrane-spanning dimeric channels [16,35]. Unfortunately,
these results do not provide information on the specific properties of
tryptophan that contribute to the loss of channel structure and function.
The loss in structure and function upon substitution of tryptophan with
phenylalanine or tyrosine could be attributed to the loss of dipole
moment, lack of hydrogen bonding ability, change in hydrophobicity, or
a combination of these factors. Among these, the role of indole ring dipole
momentwas previously explored by using 5-fluorotryptophan instead of
tryptophan [34,40]. This substitution increases the indole dipolemoment
without altering other properties.

In the context of the importance of hydrogen bonding in membrane
protein structure and function [41,42], tryptophan residues were
previously modified to 1-methyltryptophan in order to evaluate the
contribution of the hydrogen bonding ability of tryptophans in
maintaining the channel conformation of gramicidin (see Fig. 1c for
the chemical structures of indole and 1-methylindole) [43]. Such
modification results in the loss of hydrogen bonding ability of
tryptophans. Yet, properties such as aromaticity and ring shape remain
invariant. Importantly, the magnitude (~2.1D for tryptophan and 2.2D
for 1-methyltryptophan) and direction of the dipole moment are not
altered (see Fig. 1b) [43]. In this work, we explored the membrane
organization and dynamics of the N-methylated tryptophan analog of
gramicidin, i.e., tetramethyltryptophan gramicidin (TM-gramicidin), in
which all four tryptophans are replaced by 1-methyltryptophan
residues. We applied a combination of fluorescence approaches which
include red edge excitation shift (REES) analysis, fluorescence lifetime
and anisotropy measurements, membrane penetration depth mea-
surement, and circular dichroism (CD) spectroscopy toward this goal.
Our results show that in the absence of the hydrogen bonding ability
of tryptophans, TM-gramicidin is not able to maintain the single
stranded, head-to-head dimeric channel conformation in membranes.
These results are consistent with recent single-channel and solid-state
NMR results using TM-gramicidin [43].

2. Materials and methods

2.1. Materials

POPC, DOPC, 5-PC and 12-PC were obtained from Avanti Polar Lipids
(Alabaster, AL). 2-AS and 12-AS were from Molecular Probes (Eugene,
OR). Gramicidin A′ (from Bacillus brevis) and DMPC were purchased
fromSigmaChemical Co. (St. Louis,MO). TM-gramicidinwas synthesized
as described earlier [43]. Concentrations of both peptideswere calculated
using a molar extinction coefficient (ε) of 20,700M−1 cm−1 at 280nm.
Lipids were checked for purity by thin layer chromatography on silica
gel precoated plates (Sigma) in chloroform/methanol/water (65:35:5,
v/v/v) and were found to give a single spot in all cases when visualized
upon charring with a solution containing cupric sulfate (10%, w/v) and
phosphoric acid (8%, v/v) at 150 °C [44]. The concentration of
phospholipids was determined by phosphate assay subsequent to total
digestion by perchloric acid [45]. DMPCwas used as an internal standard
to assess lipid digestion. All other chemicals used were of the highest
purity available. Solvents used were of spectroscopic grade. Water was
purified through a Millipore (Bedford, MA) Milli-Q system and used for
all experiments.
2.2. Methods

2.2.1. Sample preparation
Experiments were performed using SUV of POPC containing 2%

(mol/mol) gramicidin or TM-gramicidin. In general, 1280nmol of POPC
in methanol was mixed with 25.6 nmol of gramicidin or TM-gramicidin
in methanol. A few drops of chloroform were added to this solution.
The solution was mixed well and dried under a stream of nitrogen
while warming gently (~40 °C), and dried further under a high vacuum
for at least 3 h. The dried film was swelled in 1.5ml of 10mM sodium
phosphate, 150 mM sodium chloride, pH 7.2 buffer, and samples were
vortexed for 3min to uniformly disperse the lipid and peptide. Samples
were sonicated to clarity under argon (~50 min in short bursts while
being cooled in an ice/watermixture) using a Bransonmodel 250 sonifier
(Branson Ultrasonics, Danbury, CT) fitted with a microtip. The sonicated
samples were centrifuged at 15,000rpm in a Heraeus Biofuge centrifuge
(DJB Labcare, Buckinghamshire, U.K.) for 15min to remove the titanium
particles shed from the microtip during sonication, and incubated for
12 h at 65 °C with continuous shaking to convert to the channel
conformation [46,47]. Samples were incubated in a dark at room
temperature (~25 °C) for 1 h before fluorescence or CD measurements.
Background samples were prepared the same way except that the
peptide was omitted. All experiments were done with multiple sets of
samples at room temperature (~25 °C).

2.2.2. Circular dichroism (CD) measurements
CD measurements were carried out at room temperature (~25 °C)

with a JASCO J-815 spectropolarimeter (Tokyo, Japan) calibrated with
(+)-10-camphorsulfonic acid. Spectra were scanned in a quartz optical
cell with a path length of 0.1 cm, and recorded in 0.5 nm wavelength
increments and band width of 2 nm. For monitoring changes in
secondary structure, spectra were scanned from 200 to 260 nm in the
far-UV range. The scan rate was 50 nm/min and each spectrum is the
average of 8 scans with a full scale sensitivity of 100 mdeg. Spectra
were corrected for background by subtraction of appropriate blanks.
Data are represented as mean residue ellipticities and calculated using
the equation:

θ½ � ¼ θobs= 10Clð Þ ð1Þ

where θobs is the observed ellipticity in mdeg, l is the path length in cm,
and C is the concentration of peptide bonds in mol/l.

2.2.3. Steady state fluorescence measurements
Steady state fluorescence measurements were performed with a

Hitachi F-4010 spectrofluorometer (Tokyo, Japan) using 1 cm path
length quartz cuvettes. Excitation and emission slits with a nominal
bandpass of 5 nm were used for all measurements. Background
intensities of samples inwhich thepeptidewas omittedwere subtracted
from each sample spectrum to cancel out any contribution due to the
solvent Raman peak and other scattering artifacts. The spectral shifts
obtained with different sets of samples were identical in most cases, or
were within ±1 nm of the ones reported. Fluorescence anisotropy
measurements were performed at room temperature (~25 °C) using a
Hitachi polarization accessory. Fluorescence anisotropy values were
calculated from the equation [48]:

r ¼ I
VV
−GI

VH

I
VV

þ 2GI
VH

ð2Þ

where IVV and IVH are the measured fluorescence intensities (after
appropriate background subtraction) with the excitation polarizer
vertically oriented and emission polarizer vertically and horizontally
oriented, respectively. G is the grating correction factor and is the ratio
of the efficiencies of the detection system for vertically and horizontally
polarized lights, and is equal to IHV/IHH. All experimentswere performed



2 We have used the term maximum of fluorescence emission in a somewhat broader
sense here. In every case, we have monitored the wavelength corresponding to the
maximum fluorescence intensity, as well as the center of mass of the fluorescence
emission, in the symmetric part of the spectrum. In most cases, both these methods
yielded the same wavelength. In cases where minor discrepancies were found, the center
of mass of emission has been reported as the fluorescence maximum.
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with multiple sets of samples and average values of anisotropy are
reported.

2.2.4. Time-resolved fluorescence measurements
Fluorescence lifetimes were calculated from time-resolved fluo-

rescence intensity decays using an IBH 5000F NanoLED equipment
(Horiba Jobin Yvon, Edison, NJ) with DataStation software in the time-
correlated single photon counting mode. A pulsed light emitting diode
(LED) (NanoLED-17) was used as the excitation source. This LED
generates optical pulse at 294 nm with a pulse duration less than
750ps, and is run at a 1MHz repetition rate. The LED profile (instrument
response function) was measured at the excitation wavelength using
Ludox (colloidal silica) as the scatterer. In order to optimize the signal
to noise ratio, 10,000 photon counts were collected in the peak channel.
All experimentswere performed using emission slits with a bandpass of
6 nm or less. The sample and the scatterer were alternated after every
5% acquisition to ensure compensation for any shape and timing drifts
that could occur during the period of data collection. This arrangement
also prevents any prolonged exposure of the sample to the excitation
beam, thereby avoiding any possible photodamage to the fluorophore.
Data were stored and analyzed using DAS 6.2 software (Horiba Jobin
Yvon, Edison, NJ). Fluorescence intensity decay curves so obtained
were deconvoluted with the instrument response function and
analyzed as a sum of exponential terms:

F tð Þ ¼
X

i
αiexp −t=τið Þ ð3Þ

where F(t) is the fluorescence intensity at time t and αi is a pre-
exponential factor representing the fractional contribution to the time-
resolved decay of the component with a lifetime τi such that Σiαi = 1.
Decay parameters were recovered using a nonlinear least squares
iterative fitting procedure based on the Marquardt algorithm [49]. The
program also includes statistical and plotting subroutine packages
[50]. The goodness of fit of a given set of observed data and the chosen
function was evaluated by the χ2 ratio, the weighted residuals [51],
and the autocorrelation function of the weighted residuals [52]. A fit
was considered acceptable when plots of the weighted residuals and
the autocorrelation function showed random deviation about zero
with a minimum χ2 value not more than 1.4. Intensity-averaged mean
lifetimes (bτN) for triexponential decays offluorescencewere calculated
from the decay times and pre-exponential factors using the following
equation [48]:

τh i ¼ α1τ
2
1 þ α2τ

2
2 þ α3τ

2
3

α1τ1 þ α2τ2 þ α3τ3
: ð4Þ

2.2.5. Depth measurements using the parallax method
The actual spin (nitroxide) content of the spin-labeled phos-

pholipids (5- and 12-PC) was assayed using fluorescence quenching of
anthroyloxy-labeled fatty acids (2- and 12-AS) as described earlier
[53]. For depth measurements, SUVs were prepared by sonication
as described above (see Section 2.2.1). These samples were made
with 160 nmol of DOPC containing a 15 mol% spin-labeled phos-
pholipid (5- or 12-PC) and 3.2 nmol of TM-gramicidin. Duplicate
samples were prepared in each case except for samples lacking the
quencher (5- or 12-PC) where triplicates were prepared. Background
samples lacking the peptide were prepared in all experiments, and
their fluorescence intensities were subtracted from the respective
sample fluorescence intensity.

3. Results

Circular dichroism spectroscopy is a convenient method to monitor
conformations of gramicidin in membranes [25,36,43,54]. CD spectrum
for the channel conformation of gramicidin displays two characteristic
peaks of positive ellipticity at ~218 and 235 nm, a valley at 230 nm,
and a negative ellipticity below 208 nm. These are considered to be
characteristic of the single-stranded β6.3 conformation. The nonchannel
form of gramicidin exhibits a large negative peak at ~229nm, a weaker
positive peak at ~218 nm, and a positive ellipticity below 208 nm. We
examined the backbone conformation of TM-gramicidin using CD
spectroscopy in POPC in order to complement the CD spectra previously
reported for the analog in DMPC and DOPC [43]. Fig. 2 shows the CD
spectrum of TM-gramicidin. The figure also shows the spectrum for
gramicidin in the channel conformation (induced by sonication
followed by prolonged heat incubation at 65 °C) as a reference.
Interestingly, the CD spectrum of TM-gramicidin resembles the spectral
features of the nonchannel conformation.

The normalized fluorescence emission spectra of gramicidin and TM-
gramicidin in POPC vesicles are shown in Fig. 3. The figure shows that
tryptophans in the channel form of gramicidin display an emission
maximum2 of 333 nm (when excited at 280 nm) in agreement with
previous results [25]. In contrast, the emission maximum of TM-
gramicidin displays a significant red shift and is at 340nm. Interestingly,
the fluorescence of 1-methyltryptophan (the fluorophore in TM-
gramicidin) has been reported to be sensitive to its immediate
environment [55,56]. The relatively red-shifted emission maximum of
TM-gramicidin could be indicative of the average environment expe-
rienced by 1-methyltryptophans in TM-gramicidin. It should be noted
here that the emission maxima of gramicidin and TM-gramicidin in
methanol do not differ appreciably (data not shown). The difference in
the emission maximum observed in a membrane-bound condition
therefore can be attributed to the conformational differences adopted
by gramicidin and TM-gramicidin. We have previously reported a red-
shifted emission maximum in the case of the nonchannel conformation
of gramicidin [25].

The inset in Fig. 3 shows the relative fluorescence intensities of
gramicidin and TM-gramicidin at their respective emission maximum.
TM-gramicidin exhibits an appreciable increase (~3.5 fold) in fluo-
rescence intensity relative to gramicidin. This could be attributed to
both the photophysical properties of 1-methyltryptophan and the
apparent nonchannel conformation of TM-gramicidin in POPC
membranes. The quantum yield of 1-methyltryptophan has been
reported to be higher than that of tryptophan [56], which could
lead to an increase in fluorescence intensity for TM-gramicidin. We
have earlier shown that the conformational change of gramicidin
in membranes from the nonchannel to channel form is accompanied
by a reduction in fluorescence intensity [25]. In other words, the
nonchannel conformation is characterized by an increased fluo-
rescence, possibly due to the fact that there is a distribution of
tryptophans along the bilayer normal in this conformation. The
increase in fluorescence intensity in the case of TM-gramicidin could
therefore be due to the relatively nonpolar environment in which the
fluorophore 1-methyltryptophan of TM-gramicidin is localized, since
a reduction in polarity is associated with enhancement of fluorescence
[55]. Yet another reason could be the release of quenching in the
nonchannel conformation due to absence of aromatic–aromatic
(stacking) interaction between the fluorophores at positions 9 and
15 observed in the channel conformation [28,37].

REES is defined as the shift in the wavelength of the maximum
fluorescence emission toward higher wavelengths, caused by a shift in
the excitation wavelength toward the red edge of the absorption band.
This effect assumes relevance for polar fluorophores in a motionally
restricted environment where the dipolar relaxation time for the
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solvent shell around a fluorophore becomes comparable to or longer
than its fluorescence lifetime [12,13,57–60]. An attractive aspect of
REES is that it allows the monitoring of the mobility parameters of the
environment itself (represented by the relaxing solvent molecules)
using the fluorophore merely as a reporter group. REES has proved to
be a useful tool to monitor gramicidin conformations in membranes
and membrane-mimetic environments [25,28,36,37,61,62].

Fig. 4 shows the shifts in the maxima of fluorescence emission of
gramicidin and TM-gramicidin as a function of excitation wavelength.
The figure shows that the emission maximum of gramicidin is shifted
from 333 to 340 nm in response to a change in excitation wavelength
from 280 to 307 nm. This corresponds to a REES of 7 nm. TM-
gramicidin, on the other hand, exhibits a relatively modest shift from
340 to 343 nm (corresponding to a REES of 3 nm), upon change in
excitation wavelength from 280 to 307 nm. Such dependence of the
emission maximum on excitation wavelength is representative of
REES. It is possible that there could be further red shift upon excitation
beyond 307nm. We found it difficult to work in this wavelength range
due to a low signal to noise ratio and artifacts due to the solvent Raman
peak that sometimes remained even after background subtraction.

We previously reported that the magnitude of REES could be
correlatedwith the vertical localization (depth) of the given fluorophore
in themembrane [63]. Fluorophores present in themembrane interfacial
region, characterized by restricted dynamics due to themobility gradient
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of membranes in the vertical (z) direction [64], display greater REES
relative to fluorophores localized in the deeper (more fluid) regions of
the membrane. The inset in Fig. 4 shows that the magnitude of REES
(3 nm) exhibited by TM-gramicidin is considerably less compared to
REES (7 nm) of gramicidin in the channel conformation. As stated
above, a characteristic feature of the tryptophan residues in the
gramicidin channel conformation is that they remain clustered at the
membrane–water interface [25–28]. However, this is not true for the
nonchannel conformationwhere the tryptophan residues are distributed
along the membrane axis [10,22,25]. As a result, the nonchannel
conformation of gramicidin has earlier been characterized by modest
REES [25]. The magnitude of REES exhibited by TM-gramicidin therefore
indicates that the localization of fluorophores (1-methyltryptophan) in
TM-gramicidin is deeper than the localization of tryptophans in
gramicidin channels. This is also consistent with their lack of hydrogen
bonding ability, since the membrane interface offers suitable chemistry
for hydrogen bonding [13]. These results imply a nonchannel-like
organization for TM-gramicidin in the membrane. This is in agreement
with the results from CD measurements (see Fig. 2).

Fluorescence lifetime serves as a sensitive indicator of the local
environment and polarity in which a given fluorophore is localized
[65]. A typical decay profile of TM-gramicidin in POPC vesicles with its
triexponential fitting and the statistical parameters used to check the
goodness of fit are shown in Fig. 5. The fluorescence lifetimes of
gramicidin and TM-gramicidin are shown in Table 1. Fluorescence decays
could be fitted well with a triexponential function. The intensity-
averaged mean fluorescence lifetimes (corresponding to emission at
340 nm) were calculated using Eq. (4) and are shown in Fig. 6a. We
chose to use the intensity-averaged mean fluorescence lifetime as an
important parameter, since it is independent of the method of analysis
and the number of exponentials used to fit the time-resolved fluo-
rescence decay. Fig. 6a shows that the mean fluorescence lifetime of
the tryptophan residues in gramicidin (~3.2 ns) is lower than that
of 1-methyltryptophans in TM-gramicidin (~6.7 ns). The higher
lifetime of TM-gramicidin could be due to the higher lifetime of 1-
methyltryptophan compared to tryptophan [55,56]. The localization
of the fluorophores in relatively nonpolar regions of the membrane
in the nonchannel conformation of TM-gramicidin could also
contribute to the higher lifetime since lifetimes tend to be shorter
in polar environments due to faster deactivation processes [66].

The change in themean fluorescence lifetime of gramicidin and TM-
gramicidin as a function of increasing emission wavelength is shown in
Fig. 6b. The mean fluorescence lifetime exhibits a considerable increase
in both cases with increasing emission wavelength from 330 to
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370 nm. Similar observation of increasing lifetime with increasing
emission wavelength has previously been reported for tryptophans in
environments of restricted mobilities [28,67]. However, the extent of
increase in mean fluorescence lifetime displayed considerable variation.
The extent of increase in mean fluorescence lifetime with increasing
wavelength was ~27% for gramicidin relative to ~11% in the case of
TM-gramicidin. The difference in the extent of increase in fluorescence
lifetime is indicative of the difference in their averagemicroenvironment
in the membrane. This is consistent with relatively large REES in
gramicidin compared to TM-gramicidin (Fig. 4). Such increasing
lifetimes across the emission spectrum may be interpreted in terms of
solvent reorientation around the excited state fluorophore as follows
[57]. Observation of emission spectra at shorter wavelengths selects for
predominantly unrelaxed fluorophores. Their lifetimes are shorter
since this sub-population is decaying both at the rate of fluorescence
emission at the given excitation wavelength and by decay to longer
(unobserved)wavelengths. On the other hand, observation at the longer
emission wavelength (red edge) selects for the population of more
relaxed fluorophores, which have spent enough time in the excited
state to allow increasingly larger extents of solvent relaxation.
Table 1
Representative fluorescence lifetimes of gramicidin and TM-gramicidin in POPC vesicles
with increasing emission wavelengtha

Emission wavelength (nm) α1 τ1
(ns)

α2 τ2
(ns)

α3 τ3
(ns)

(a) Gramicidin
330 0.16 0.15 0.63 1.48 0.21 4.32
340 0.12 0.22 0.65 1.61 0.23 4.86
350 0.13 0.12 0.61 1.58 0.26 4.80
360 0.11 0.12 0.61 1.62 0.28 5.07
370 0.13 0.11 0.56 1.65 0.31 5.12

(b) TM-gramicidin
330 0.08 0.28 0.37 3.22 0.55 7.41
340 0.07 0.60 0.50 4.12 0.43 8.34
350 0.06 1.47 0.58 5.23 0.36 8.92
360 0.03 0.91 0.47 4.46 0.50 8.27
370 0.05 1.68 0.66 5.45 0.29 9.23

a Excitation wavelength was 294 nm. The number of photons collected at the peak
channel was 10,000. All other conditions are as in Fig. 2. See Materials and methods for
other details.
The fluorescence anisotropy of gramicidin and TM-gramicidin is
shown in Fig. 7a. The anisotropy of gramicidin (0.12) was found to be
higher than that of TM-gramicidin (0.04). To ensure that the reported
anisotropy values are not influenced by lifetime-induced artifacts, the
apparent (average) rotational correlation times were calculated using
Perrin's equation [48]:

τC ¼ bτNr
ro–r

ð5Þ

where ro is the limiting anisotropy of 1-methylindole or indole, r is the
steady state anisotropy, and bτN is the mean fluorescence lifetime
taken from Fig. 6b. The values of the apparent rotational correlation
times, calculated this way using a value of ro of 0.30 for indole and
0.15 for 1-methylindole [68], are shown in Fig. 7b. As is evident from
the figure, the apparent rotational correlation time of gramicidin
(~2.1 ns) is lower relative to that of TM-gramicidin (~2.7ns). This is in
contrast to the trend observed in fluorescence anisotropy (see Fig. 7a).
This implies that the apparent rotational correlation time, and not
fluorescence anisotropy, is a correct indicator of rotational mobility in
this case, since the latter could be influencedby a change influorescence
lifetime. Based on these results, it appears that the increased bulk (steric
hindrance) and hydrophobicity associated with the methyl group
probably restricts the side chain motion of 1-methylindole in TM-
gramicidin. This is in agreement with similar observations made using
NMR for membrane-bound TM-gramicidin [43].

Membrane penetration depth [69–71] is an important parameter in
the study ofmembranepeptides [25] and proteins [72], since knowledge
of the depth of a membrane embedded group helps define the
conformation and topology of membrane-boundmolecules. In addition,
a number of membrane properties vary in a depth-dependent manner
[64]. More importantly, the membrane penetration depths of tryp-
tophans in gramicidin serve as a useful indicator of its conformation.
This is because the location, depth, orientation, and distribution of the
tryptophan residues of gramicidin vary considerably in the channel
and nonchannel conformations [25,27,33,36,37]. The distribution of
tryptophans along themembrane axis is more extensive and the overall
(average) locations of tryptophans are deeper in the nonchannel
conformation [25,73,74]. To gain a better insight on the conformation
of TM-gramicidin in membranes, penetration depths of its fluorophores
(1-methyltryptophans) were determined. The average depth of these
residues was calculated by the parallaxmethod [69] using the equation:

zcF ¼ Lc1 þ −1=πCð Þ ln F1=F2ð Þ–L212
h i

=2 L21
n o

ð6Þ

where zcF = the distance of the fluorophore from the center of the
bilayer, Lc1= the distance of the center of the bilayer from the shallow
quencher (5-PC in this case), L21=the difference in depth between the
two quenchers (i.e., the vertical distance between the shallow and the
deep quencher), and C= the two-dimensional quencher concentration
in the plane of the membrane (molecules/Å2). Here F1/F2 is the ratio of
F1/Fo and F2/Fo in which F1 and F2 are fluorescence intensities in the
presence of the shallow (5-PC) and deep (12-PC) quencher, respectively,
both at the same quencher concentration C; Fo is the fluorescence
intensity in the absence of any quencher. All bilayer parameters used
were the same as described previously [69].

The average depth of penetration of 1-methyltryptophan residues in
TM-gramicidin is shown in Table 2. The average depths of penetration of
tryptophans in gramicidin in the channel and nonchannel confor-
mations are shown as controls in the table. These results show that 1-
methyltryptophan residues in TM-gramicidin are localized at a deeper
region in the membrane, as apparent from the average depth of ~8 Å
from the center of the bilayer (see Fig. 8). In comparison, the average
depths of tryptophans in the channel and nonchannel conformations of
gramicidin were earlier found to be ~11 and 7Å from the center of the
membrane, respectively [25]. Although these are average depths, they



425A. Chaudhuri et al. / Biochimica et Biophysica Acta 1838 (2014) 419–428
are useful since they represent the lower limit of depth of penetration.
The similarity in penetration depth between TM-gramicidin and the
nonchannel conformation of gramicidin suggests that TM-gramicidin
could adopt a nonchannel conformation under these conditions. This is
in agreement with our data obtained from CD measurements (Fig. 2),
and the red-shifted fluorescence emission spectrum displayed by TM-
gramicidin (see Fig. 3).
a

4. Discussion

The importance of tryptophan residues in maintaining the structure
and function of membrane proteins and peptides is a subject of
considerable interest [7,10,11,58,75–77]. Interestingly, the reason for
the non-uniform distribution of tryptophan residues in integral
membrane proteins and peptides is believed to be due to their
involvement in hydrogen bonding [43,78]with the lipid carbonyl groups
or interfacial water molecules. As a consequence, substitution or
deletion of tryptophans inmembrane proteins often results in reduction
or loss of protein function [16–20]. As stated above, gramicidin channels
represent an excellent model for exploring the principles underlying
membrane protein structure and function, especially with respect to
tryptophan residues. The anchoring property of tryptophans in the
gramicidin channel has inspired the design of synthetic helical peptides,
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having tryptophans as a common flanking motif, for studying lipid–
protein interactions in membranes [79].

Gramicidin channels represent an excellent model for exploring the
physicochemical principles underlying membrane protein structure
and function. It was earlier shown that TM-gramicidin adopts a
predominantly double stranded conformation in DMPC and DOPC
bilayers [43]. Keeping in view the fact that DMPC bilayers are relatively
thin compared to biological membranes, it was important to investigate
the organization and dynamics of TM-gramicidin in the thicker and
physiologically representative POPC bilayer membranes. In this work,
we monitored the conformation and dynamics of the N-methylated
analog of gramicidin (TM-gramicidin) in which the hydrogen bonding
ability of tryptophan residues is masked due to methylation, using a
variety of fluorescence approaches and CD spectroscopy. As stated
above, an advantage of using methylated tryptophans is that it allows
specific focus on the hydrogen bonding ability of tryptophans without
altering other factors (such as dipole moment). Our results show that
fluorescent analogs of tryptophan such as 1-methyltryptophan could
be utilized to monitor the effect of hydrogen bonding of tryptophans
in membrane-bound peptides and proteins utilizing their fluorescence.
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Table 2
Average membrane penetration depth by the parallax methoda

Peptide Distance from the center of the bilayer zcF (Å)

TM-gramicidin 8.1
Gramicidin (channel)b 11.0
Gramicidin (nonchannel)b 7.3

a Depthswere calculated fromfluorescence quenchings obtainedwith samples containing
15mol% of 5-PC and 12-PC and using Eq. (6). Samples were excited at 280nm, and emission
was monitored at 335 nm. The ratio of peptide to total lipid was 1:50 (mol/mol). See
Materials and methods for other details.

b From Ref. [25].
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The carbonyl groups of ester lipids, lipid headgroups and water
molecules present at membrane interface are all possible hydrogen
bond acceptors. Previous work using Raman spectroscopy has indicated
the formation of strong hydrogen bonds between lipid carbonyl groups
and the indole \NH sites in the single stranded β6.3 gramicidin
conformation in membranes [80]. In addition, molecular dynamics
simulation of gramicidin in lipid bilayers has suggested that the
interfacially localized tryptophan side chains form hydrogen bonds
with ester carbonyl groups of lipids and membrane interfacial water
molecules [81,82]. In addition, simulation studies with membrane
proteins such as KcsA and OmpA have shown the existence of hydrogen
bonds between tryptophan residues with interfacial water molecules
and polar headgroups of lipids [83].

Our results show that TM-gramicidin is not able tomaintain the single
stranded, head-to-head dimeric channel conformation in membranes,
thereby demonstrating the important role of indole hydrogen bonding
in the channel conformation. These results, concerning the major
gramicidin population, are in agreement with the previous results from
size-exclusion chromatography, which demonstrated a conformational
mixture of ~70% double stranded and only ~30% single stranded channel
INTERFACE

INTERFACE

HYDROCARBON 

CORE

Gramicidin

(channel form)

Fig. 8. Effect of 1-methyl substitution of tryptophan residues in the conformation of gramici
gramicidin and nonchannel form of TM-gramicidin. Our results suggest that the substitution o
more nonchannel-like. The preferred locations of tryptophans (shown in olive and blue) in gra
localized in themembrane interface region in the channel formof gramicidin,whereas in the no
are distributed along the membrane axis. See Fig. 1 and text for details.
conformation for TM-gramicidin [43]. Interestingly, when four phenyl-
alanine residues are introduced into gramicidin instead of four tryp-
tophan residues, the resulting tetraphenylalanine-gramicidin also lacks
hydrogen bonding ability and folds b20% into the single stranded channel
conformation [35]. As a consequence, we observe that TM-gramicidin
exhibits a red-shifted fluorescence emission maximum, lower REES,
and higher fluorescence intensity and lifetime (Figs. 3, 4 and 6a).
These features of TM-gramicidin compare well with the nonchannel
conformation of gramicidin [25]. The location (depth) of the 1-
methyltryptophans in TM-gramicidin further enforces this conclusion.
Unlike gramicidin channels, in which all the tryptophans are localized
at the membrane interface, the average depth of 1-methyltryptophans
in TM-gramicidin is more (see Table 2), a characteristic shared by the
nonchannel form (as the majority population) [25]. The energy cost of
burial of the indole in the hydrophobic core of the bilayer can provide
the driving force for the conformational preference of gramicidin (single
stranded channel or double stranded nonchannel). We conclude that
coupled changes in the hydrogen bonding ability of tryptophan and
peptide backbone structure are responsible for the loss of channel
conformation. These results are consistent with previous size-exclusion,
single-channel and solid-state NMR results using TM-gramicidin [43].
An additional message from our results is that fluorescence of 1-
methyltryptophan could be effectively used as a tool to explore the
hydrogen bonding ability of tryptophans in proteins and peptides.

We and others have previously shown that single tryptophan
gramicidin analogs adopt predominantly nonchannel conformations
[35,36]. In addition, we have recently shown that the positions of
tryptophan residues in membranes are important for gramicidin
structure and function [37,54]. We show here that the hydrogen
bonding ability of tryptophans represents a crucial determinant in
maintaining the gramicidin channel structure in the membrane. In
a broader perspective, our results assume relevance in the context
TM-Gramicidin

(nonchannel form)

din. A schematic representation of the membrane bilayer showing the channel form of
f tryptophans with 1-methyltryptophan in gramicidin results in a conformation which is
micidin channel are shown. It should be noted that tryptophan residues are preferentially
nchannel conformation (as in the case of TM-gramicidin) the 1-methyltryptophan residues
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of the role of indole hydrogen bonding for the conformational and
functional properties of ion channels and membrane proteins.
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