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  Abbreviations  

  FITC    Fluorescein isothiocyanate   
  GPCR    G-protein coupled receptor   
  M b CD    Methyl- b -cyclodextrin     

       Cholesterol: An Essential Lipid in Organization 
and Function of Eukaryotic Membranes 

 Cholesterol is a major and essential constituent in higher eukaryotic cellular membranes 
and is crucial in membrane organization, dynamics, function, and sorting (Liscum 
and Underwood  1995 ; Simons and Ikonen  2000 ; Mouritsen and Zuckermann  2004  ) . 
Cholesterol is a predominantly hydrophobic molecule comprising a near planar tetra-
cyclic fused steroid ring and a  fl exible isooctyl hydrocarbon tail (see Fig.  14.1 ). The 
tetracyclic nucleus and isooctyl side chain create the bulky wedge-type shape of the 
molecule. The polar 3 b -hydroxyl group provides cholesterol its amphiphilic character 
and helps it to orient and anchor in the membrane (Villalaín  1996  ) .  

 A unique characteristic of organization of membrane cholesterol is its nonrandom 
distribution in domains (Mouritsen and Zuckermann  2004 ; Mukherjee and Max fi eld 
 2004 ; Chaudhuri and Chattopadhyay  2011  ) . Many of these domains [sometimes 
termed as “lipid rafts” (Lingwood and Simons  2010  ) ] are thought to be important for 
the maintenance of membrane structure and function, although characterizing the 
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spatiotemporal resolution of these domains has proven to be challenging (Jacobson 
et al.  2007  ) . A unique property of cholesterol which contributes to its capacity to 
form membrane domains is its ability to form liquid-ordered-like phase in higher 
eukaryotic plasma membranes (Mouritsen  2010  ) . The concept of such specialized 
membrane domains gains relevance in cell biology, since important functions such 
as signal transduction (Simons and Toomre  2000  )  have been implicated to these 
putative domains. Importantly, cholesterol plays a crucial role in the function and 
organization of membrane proteins and receptors (Pucadyil and Chattopadhyay 
 2006 ; Gimpl  2010 ; Paila and Chattopadhyay  2010  ) .  

   Membrane Cholesterol and Host–Pathogen Interaction 

 A number of studies have indicated the crucial requirement of membrane choles-
terol in host–pathogen interaction [reviewed in (Rosenberger et al.  2000 ; van der 
Goot and Harder  2001 ; Shin and Abraham  2001 ; Simons and Ehehalt  2002 ; 
Goluszko and Nowicki  2005 ; Bansal et al.  2005 ; Riethmüller et al.  2006 ; Hawkes 
and Mak  2006 ; Pucadyil and Chattopadhyay  2007 ; Vieira et al.  2010  ) ]. The ability 
to manipulate levels of membrane cholesterol with a reasonable degree of speci fi city 
has contributed to our understanding of its role in host–pathogen interaction and 
subsequent infection. Cholesterol content in the membrane can be modulated using 
a number of approaches. Such approaches include the use of water soluble carriers 
that ef fi ciently remove cholesterol from membranes, cholesterol-binding com-
pounds that sequester it in the membrane, cholesterol-modifying enzymes, and bio-
synthetic inhibitors of cholesterol (Pucadyil and Chattopadhyay  2006  ) . 

 Cyclodextrins are ef fi cient carriers of membrane cholesterol and have been utilized 
to achieve acute modulation of cholesterol content in membranes (Härtel et al.  1998  ) . 
In addition to their capacity to extract cholesterol, a variety of cyclodextrins are used in 
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  Fig. 14.1    Chemical structure of cholesterol with the three structurally distinct regions (shown in 
 different color boxes ): the 3 b -hydroxyl group, the rigid steroid ring and the  fl exible alkyl chain. 
The only polar group in cholesterol is the 3 b -hydroxyl moiety which provides the molecule its 
amphiphilic character and serves to anchor and orient cholesterol in the membrane bilayer. The 
rest of the molecule is hydrophobic which comprises of a planar tetracyclic fused steroid ring and 
a  fl exible isooctyl hydrocarbon tail       
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pharmaceutical, agrochemical, food, and cosmetic industries (Hawkes and Mak  2006 ; 
Davis and Brewster  2004  ) . Trace amounts of natural cyclodextrins are present in cer-
tain microorganisms and plants that express the enzyme cyclodextrin glucosyltrans-
ferases (CGTs), that degrade starch into cyclodextrins (Hawkes and Mak  2006  ) . 
Water-soluble carriers such as  b -cyclodextrins (see Fig.  14.2a ) have been effectively 
used to modulate cholesterol levels in cell membranes. Methyl- b -cyclodextrin (M b CD), 

  Fig. 14.2    Agents that modulate cholesterol availability in the membrane. ( a ) Chemical structure 
of  b -cyclodextrin (containing seven glucose residues) molecule. Cyclodextrins can solubilize a 
variety of hydrophobic compounds by trapping them in their inner cavity. The resultant complex 
has a characteristic stoichiometry. The speci fi city of this process depends on the structure of the 
inner cavity, which can be modi fi ed by substitution of the hydrogen atom of hydroxyl groups 
(indicated as R in the  fi gure) in each glucose residue. The commonly used cholesterol-depleting 
agent is methyl- b -cyclodextrin (M b CD), in which R is a methyl group. Adapted and modi fi ed 
from Davis and Brewster  (  2004  ) . ( b ) Chemical structure of nystatin, a sterol-binding antifungal 
polyene antibiotic. While M b CD physically depletes cholesterol from membranes, nystatin 
speci fi cally interacts with membrane cholesterol to sequester it. Both M b CD and nystatin modu-
late the availability of membrane cholesterol, thereby effectively reducing the ability of cholesterol 
to interact with and exert its effects on other membrane components       
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the oligomer with seven residues ( b -cyclodextrin) of methylated-glucose, has been 
extensively used to selectively and ef fi ciently extract cholesterol from membranes by 
incorporating it in a central nonpolar cavity (Zidovetzki and Levitan  2007  ) . The stoi-
chiometry of the cholesterol–cyclodextrin complex thus formed has been reported to 
be 1:2 (mol/mol) (Tsamaloukas et al.  2005  ) .  

 In addition, compounds that physically bind to cholesterol and sequester it in the 
membrane have been utilized to effectively reduce the availability of cholesterol 
(Pucadyil and Chattopadhyay  2006  ) . The sterol-binding antifungal polyene antibi-
otic nystatin (see Fig.  14.2b ) is a typical example of this class of molecules and has 
been used to sequester membrane sterols (Holz  1974 ; Marty and Finkelstein  1975 ; 
Bolard  1986  ) . It has been proposed that nystatin forms a 1:1 (mol/mol) complex 
with membrane cholesterol and forms channels in the membrane (de Kruijff and 
Demel  1974  ) . Nystatin speci fi cally interacts with cholesterol to sequester it in the 
membrane, thereby effectively reducing the ability of cholesterol to interact with 
and exert its effects on other membrane components such as receptors (Pucadyil 
et al.  2004a  ) . Approaches using cholesterol-modifying enzymes (Pucadyil et al. 
 2005  )  and biosynthetic inhibitors of cholesterol (Paila et al.  2008 ; Shrivastava et al. 
 2010  )  have also been used to monitor cholesterol sensitivity of receptor function. 

 A number of studies on host–pathogen interaction show that the use of choles-
terol carriers (such as M b CD) and cholesterol-sequestering agents (such as nystatin 
or amphotericin B) result in reduction in infectivity of several intracellular patho-
gens, an effect that correlates with the extent of reduction in the effective concentra-
tion of membrane cholesterol (Rosenberger et al.  2000 ; van der Goot and Harder 
 2001 ; Shin and Abraham  2001 ; Goluszko and Nowicki  2005 ; Bansal et al.  2005 ; 
Riethmüller et al.  2006 ; Hawkes and Mak  2006 ; Pucadyil and Chattopadhyay  2007 ; 
Vieira et al.  2010  ) . The role of cholesterol in pathogen infection can be classi fi ed as 
a requirement either at the stage of pathogen binding to cell surface receptors or in 
their internalization into cells (or both) (Goluszko and Nowicki  2005  ) . Membrane 
cholesterol has been shown to be necessary for the internalization of several species 
of  Mycobacteria  into macrophages (Gat fi eld and Pieters  2000 ; Peyron et al.  2000  ) . 
Similar results have been found for the internalization of  fi mbriated  E. coli  (Shin 
et al.  2000  ) . In addition to bacterial pathogens, cholesterol depletion has been found 
to inhibit the entry and sustained infection of the protozoan malaria parasite 
 Plasmodium falciparum  in erythrocytes (Lauer et al.  2000 ; Samuel et al.  2001  ) . 
Interestingly, membrane cholesterol has been reported to be essential for human 
immunode fi ciency virus-1 (HIV-1) infection (Liao et al.  2001 ; Campbell et al.  2001 ; 
Carter et al.  2009  ) , and topical application of cyclodextrins has previously been 
shown to block the transmission of cell-associated HIV-1 in mice (Khanna et al. 
 2002  ) . In addition, the entry of several other viruses such as poliovirus (Danthi and 
Chow  2004  ) ,  fl avivirus (Lee et al.  2008  ) , gastroenteritis virus (Ren et al.  2008  ) , 
borna disease virus (Clemente et al.  2009  )  have been shown to require membrane 
cholesterol. Taken together, the cellular entry and survival of pathogens of a diverse 
variety,  with no similarity in their biology , appear to be dependent on membrane 
cholesterol. This points to a generalized mechanism underlying these observations 
(see later).  
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   Role of Membrane Cholesterol in Leishmaniasis 

  Leishmania  are protozoan parasites that are responsible for substantial public health 
problems, especially in tropical and subtropical regions. The parasite is responsible 
for the disease leishmaniasis which is usually fatal if left untreated (Herwaldt  1999 ; 
Alexander et al.  1999 ; Chappuis et al.  2007  ) . Leishmaniasis threatens about 350 
million men, women, and children in 88 countries around the world. As many as 12 
million people are believed to be currently infected, with about one to two million 
estimated new cases occurring every year  (  World Health Organization Web site  ) . 
The current worldwide increase in leishmaniasis to epidemic proportions, and the 
emergence of visceral leishmaniasis as an important opportunistic infection among 
people with HIV-1 infection (Wolday et al.  1999  )  have given rise to an urgency to 
provide treatment for leishmaniasis. 

 Leishmaniasis is transmitted by the bite of the infected female sand fl y 
( Phlebotomus  spp.) when taking a bloodmeal from a host (Handman and Bullen 
 2002 ; Sacks and Noben-Trauth  2002  ) . The lifecycle of  Leishmania  has two distinct 
forms: an extracellular promastigote  fl agellar form found in the midgut of sand fl ies 
and an intracellular amastigote form that resides in phagolysosomes of mammalian 
(host) macrophages. Once in the bloodstream, promastigotes are internalized by 
dendritic cells and macrophages that subsequently transform into amastigotes by 
losing their  fl agella (Chappuis et al.  2007  ) . Entry of promastigotes into host mac-
rophages involves multiple parasite–host interactions such as recognition of speci fi c 
ligands on the parasite cell surface by receptors on the macrophage cell surface. 
A number of studies toward understanding the molecular mechanisms of parasite 
entry have led to the identi fi cation of several candidate receptors facilitating multi-
ple routes of entry thereby highlighting the redundancy in the entry process 
(Alexander et al.  1999 ; Rittig and Bogdan  2000  ) . These include membrane proteins 
present on the macrophage cell surface such as the mannose–fucose receptor, recep-
tor for advanced glycosylation end products, the  fi bronectin receptor, the Fc recep-
tor, and complement receptors such as CR1 and CR3. The large number of different 
receptors responsible for the entry of the parasite into host macrophages makes it 
dif fi cult to establish a unique therapeutic target for the treatment of leishmaniasis. 

 The entry of  Leishmania  in particular and other intracellular parasites in general 
involves interaction with the plasma membrane of host cells. As mentioned earlier, 
cholesterol is an essential component of higher eukaryotic cellular membranes and 
plays an important role in the function and organization of membrane proteins and 
receptors (Pucadyil and Chattopadhyay  2006 ; Gimpl  2010 ; Paila and Chattopadhyay 
 2010  ) , some of which may be necessary for parasite entry (Harrison et al.  2003  ) . 
Our group was the  fi rst to demonstrate the requirement of host membrane choles-
terol in the binding and internalization of  Leishmania donovani  into macrophages 
using complementary approaches (Pucadyil et al.  2004b ; Tewary et al.  2006 ; Paila 
et al.  2010  ) . In our previous work, we showed that treatment of macrophages in 
culture with the cholesterol carrier M b CD resulted in speci fi c removal of membrane 
cholesterol and a concomitant reduction in binding and subsequent infection by 
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 Leishmania  promastigotes [(Pucadyil et al.  2004b  ) , see Fig.  14.3 ]. Importantly, our 
results showed that the binding/attachment of  E. coli  to macrophages remain unaf-
fected upon cholesterol depletion (see inset of Fig.  14.3 ), thereby rendering strin-
gent speci fi city to the process of host–parasite interaction. When followed for a 
longer period of time postinfection, a reduction in the number of intracellular amas-
tigote form of the parasite was observed in case of cholesterol-depleted macrophages 
[(Pucadyil et al.  2004b  ) , see Fig.  14.4b ]. Importantly, the reduction in binding of 
 L. donovani  promastigotes to cholesterol-depleted macrophages could be reversed 
by replenishment of cholesterol, thereby reinforcing the speci fi c requirement of 
cholesterol in the infection process (Pucadyil et al.  2004b  ) .   

 If membrane cholesterol is necessary for leishmanial infection, modulating cho-
lesterol availability by other means could affect infection. We tested this proposal 
by treating host macrophages with the sterol-binding antifungal polyene antibiotic 
nystatin (Tewary et al.  2006  ) . As shown in Fig.  14.5a , treatment of macrophages 
with increasing concentrations of nystatin progressively leads to a reduction in 
the binding of  Leishmania  promastigotes to macrophages. This was accompanied 

  Fig. 14.3    Effect of cholesterol depletion on binding kinetics of FITC-labeled  Leishmania  promas-
tigotes to J774A.1 macrophages monitored by  fl ow cytometry. Data show a time-dependent reduc-
tion in  fl uorescence associated with M b CD-treated macrophages ( blue bars ) compared to control 
macrophages ( cyan bars ). Values are normalized to the  fl uorescence associated with control mac-
rophages after 15 min exposure to the parasite. The reduction in binding upon cholesterol deple-
tion appears to be speci fi c (see  inset ).  Inset  shows the effect of M b CD-mediated cholesterol 
depletion of J774A.1 cells on binding of FITC-labeled  E. coli  DH5 a  studied using  fl ow cytometry. 
Representative data shown in the  fi gure indicate a lack of sensitivity of binding of  E. coli  to mac-
rophages depleted of cholesterol, unlike what is observed with  Leishmania  promastigotes. Adapted 
and modi fi ed from Pucadyil et al.  (  2004b  ) . See Pucadyil et al.  (  2004b  )  for other details       
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by a similar concentration-dependent reduction in intracellular amastigote load 
(see Fig.  14.5b ). These results demonstrate that mere sequestration of host plasma 
membrane cholesterol (rather than physical depletion) is suf fi cient to inhibit leish-
manial infection. In other words, the nonavailability of membrane cholesterol, 
 rather than the manner in which its availability is modulated , is crucial for leishma-
nial infection. These results were recently reinforced by the observation that treat-
ment of host macrophages with the sterol-binding antifungal polyene antibiotic 

  Fig. 14.4    Cholesterol content in control and cholesterol-depleted macrophages and the effect of 
cholesterol depletion on internalization of the parasite assessed by the amastigote load in infected 
J774A.1 macrophages. ( a ) Total cellular cholesterol of control and cholesterol-depleted mac-
rophages shows a concentration-dependent reduction of cholesterol upon treatment with M b CD. 
( b ) Cholesterol-depleted macrophages using increasing concentrations of M b CD show consider-
able reduction in the number of intracellular amastigotes as revealed by Giemsa staining. Adapted 
and modi fi ed from Pucadyil et al.  (  2004b  ) . See Pucadyil et al.  (  2004b  )  for other details       
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amphotericin B results in reduction in leishmanial infection (Paila et al.  2010  ) . In 
addition, membrane cholesterol has been shown to be necessary for the entry of 
 Leishmania chagasi  into host bone marrow macrophages through cholesterol-
enriched caveolar domains (Rodríguez et al.  2006  ) . Subsequent to their entry into 
the host cells,  Leishmania  parasites prolong their survival by subverting host immunity 
(Olivier et al.  2005  ) . For example,  L. donovani  infection results in a reduction in the 

  Fig. 14.5    Effect of cholesterol sequestration by nystatin on the extent of promastigote binding and 
intracellular amastigote load of  Leishmania  parasite in host macrophages. ( a ) Treatment of mac-
rophages with increasing concentrations of nystatin results in reduction in the binding of radiola-
beled  Leishmania  promastigotes to macrophages in a concentration-dependent manner. Values are 
normalized with respect to the mean counts per minute obtained for untreated macrophages (con-
trol). ( b ) The count of the intracellular amastigote form of the parasite is shown in macrophages 
either untreated (control) or treated with increasing concentrations of nystatin. Macrophages pre-
treated with nystatin show considerable reduction in the number of intracellular amastigotes as 
revealed by Giemsa staining. Adapted and modi fi ed from Tewary et al.  (  2006  ) . See Tewary et al. 
 (  2006  )  for other details       
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ability of macrophages harboring the parasite to ef fi ciently present parasite antigens 
to T cells (Chakraborty et al.  2005  ) . Interestingly, it has been recently reported that 
cholesterol depletion might represent an immune-evasion strategy used by 
 Leishmania major  (Rub et al.  2009  ) .   

   Conclusion and the Road Ahead: Mechanism of Pathogen Entry 

 The reduction in leishmanial infection by cholesterol depletion/sequestration may 
lead to novel therapeutic strategies against leishmaniasis. A major advantage of this 
approach is that development of drug resistance, a major problem in the treatment 
of leishmaniasis (Berman  2003  ) , is absent, since the therapeutic focus is on the host 
membrane lipid, rather than the parasite. Based on the inhibitory effects of choles-
terol carriers and sequestering agents on leishmanial infection in vitro (Pucadyil 
et al.  2004b ; Tewary et al.  2006 ; Paila et al.  2010 ; Rodríguez et al.  2006  ) , the poten-
tial of using cyclodextrin-like molecules as a therapeutic strategy against leishma-
niasis in vivo appears encouraging. Cyclodextrins have previously been shown to be 
important in treating unstable atherosclerotic plaques due to their ability to remove 
cholesterol from macrophage foam cells in vitro (Atger et al.  1997  ) . As mentioned 
earlier, visceral leishmaniasis has emerged as an important opportunistic infection 
among people with HIV-1 infection (Wolday et al.  1999  ) . Interestingly, cholesterol 
has been reported to be essential for HIV-1 infection (Liao et al.  2001 ; Campbell 
et al.  2001 ; Carter et al.  2009  ) , and topical application of cyclodextrins has previ-
ously been shown to block the transmission of cell-associated HIV-1 in mice 
(Khanna et al.  2002  ) . The administration of agents that modulate membrane choles-
terol levels can therefore prove to be a powerful approach in tackling the  combined  
infection of leishmaniasis associated with HIV-1 infection. 

 The crucial role played by membrane cholesterol in host–pathogen interactions is 
emerging to be an important area of pathogen biology (Rosenberger et al.  2000 ; van 
der Goot and Harder  2001 ; Shin and Abraham  2001 ; Simons and Ehehalt  2002 ; 
Goluszko and Nowicki  2005 ; Bansal et al.  2005 ; Riethmüller et al.  2006 ; Hawkes 
and Mak  2006 ; Pucadyil and Chattopadhyay  2007 ; Vieira et al.  2010  ) . The mecha-
nism of such inhibition in pathogen entry upon depletion of membrane cholesterol 
remains elusive. Interestingly, G-protein coupled receptors (GPCRs) are implicated 
for the entry of pathogens to host cells. For example, the  b  

2
 -adrenergic receptor has 

been shown to be responsible for the entry of malaria parasite  P. falciparum  in host 
cells (Harrison et al.  2003  ) . Based on our and others work on role of membrane 
cholesterol in maintaining receptor function (Pucadyil and Chattopadhyay  2006 ; 
Gimpl  2010 ; Paila and Chattopadhyay  2010  ) , we propose that the conformation of 
membrane receptors necessary for pathogen entry into cells could be dependent on 
membrane cholesterol. Due to lack of membrane cholesterol availability, these 
receptors assume a conformation(s) that does not support pathogen entry leading to 
inhibition in the entry of pathogens to host cells. We plan to check this hypothesis in 
our future work. 
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 Interestingly, it has been very recently reported that the host membrane machin-
ery (host lipidome) is exploited and modulated by pathogens for their entry, sur-
vival, and replication (Cossart and Roy  2010 ; van der Meer-Janssen et al.  2010  ) . 
This is achieved by pathogens by modulating the lipid homeostasis machinery of 
the host cell and inducing multiple changes in host cell signaling and traf fi cking. 
A comprehensive lipidomic analysis of host–pathogen interaction, therefore, will 
provide novel insight that could lead to more speci fi c drugs against pathogens.      
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