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Abstract The serotonin1A receptor is the most extensively studied member of the family of

seven transmembrane domain G-protein coupled serotonin receptors. Since a large portion of

such transmembrane receptors remains in contact with the membrane lipid environment, lipid–

protein interactions assume importance in the structure-function analysis of such receptors. We

have earlier reported the requirement of cholesterol for serotonin1A receptor function in native

hippocampal membranes by specific depletion of cholesterol using methyl- b-cyclodextrin. In

this paper, we monitored the serotonin1A receptor function in membranes that are enriched in

cholesterol using a complex prepared from cholesterol and methyl-b-cyclodextrin. Our results

indicate that ligand binding and receptor/G-protein interaction of the serotonin1A receptor do

not exhibit significant difference in native and cholesterol-enriched hippocampal membranes

indicating that further enrichment of cholesterol has little functional consequence on the

serotonin1A receptor function. These results therefore provide new information on the effect of

cholesterol enrichment on the hippocampal serotonin1A receptor function.
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Abbreviations

BCA bicinchoninic acid

DMPC dimyristoyl-sn-glycero-3-phosphocholine

GPCR G-protein coupled receptor

GTP-c-S guanosine-5¢-O-(3-thiotriphosphate)

MbCD methyl-b-cyclodextrin

5-HT 5-hydroxytryptamine (serotonin)

5-HT1A receptor 5-hydroxytryptamine-1A receptor

8-OH-DPAT 8-hydroxy-2(di-N-propylamino) tetralin

A. Chattopadhyay (&) Æ Md. Jafurulla Æ T. J. Pucadyil
Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
E-mail: amit@ccmb.res.in

Biosci Rep (2006) 26:79–87
DOI 10.1007/s10540-006-9009-9

123



p-MPPI 4-(2¢-methoxy)-phenyl-1-[2¢-(N-2¢¢-pyridinyl)-p-iodobenzamido]

ethyl-piperazine

PMSF phenylmethylsulfonyl fluoride

p-MPPF 4-(2¢-methoxy)-phenyl-1-[2¢-(N-2¢¢-pyridinyl)-p-fluorobenzamido]

ethyl-piperazine

Introduction

Lipid–protein interactions assume importance in the structure-function analysis of membrane

proteins (Huber et al. 2004). Since a large portion of transmembrane receptors remains in

contact with the membrane lipid environment, there exists the possibility that the membrane

could be an important modulator of receptor structure and function (Lee 2004). Cholesterol is

an essential component of eukaryotic membranes and is often found distributed non-randomly

in domains in biological and model membranes (Schroeder et al. 1995; Mukherjee and

Maxfield 2004). The effect of cholesterol on the structure and function of integral membrane

proteins has been a subject of intense investigation (Burger et al. 2000). Cholesterol has been

reported to modulate membrane protein function either through a specific molecular interac-

tion with such proteins (Gimpl et al. 2002), or due to alterations in the membrane physical

properties induced by the presence of cholesterol (Ohvo-Rekila et al. 2002; Lee 2004), or due

to a combination of both factors. In view of the importance of cholesterol in the organization,

dynamics and function of eukaryotic membranes (Schroeder et al. 1995; Mukherjee and

Maxfield 2004), which regulate membrane protein function (Burger et al. 2000), the interaction

of cholesterol with membrane proteins represents an important determinant in the functional

studies of such proteins.

Serotonergic signaling plays a crucial role in the generation and modulation of various

cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual

activity, depression, anxiety, alcohol abuse, aggression and learning (Artigas et al. 1996;

Ramboz et al. 1998; Rocha et al. 1998; Meneses 1999). Disruptions in serotonergic systems

have been implicated in the etiology of mental disorders such as schizophrenia, migraine,

depression, suicidal behavior, infantile autism, eating disorders, and obsessive compulsive

disorder (Ramboz et al. 1998; Heisler et al. 1998; Parks et al. 1998; Sarnyai et al. 2000).

Serotonergic signaling is initiated by the binding of serotonin to distinct cell surface receptors

which have been classified into many groups (Hoyer et al. 2002). Among the 14 subtypes of

serotonin receptors, the G-protein coupled serotonin1A (5-HT1A) receptor subtype is the most

extensively studied for a number of reasons that include its importance in neuronal physiology

and the early availability of ligands that bind the receptor with high affinity and specificity that

has resulted in extensive pharmacological characterization of this receptor (Pucadyil et al.

2005a). The 5-HT1A receptor has been implicated in neural development (del Olmo et al. 1998;

Gross et al. 2002) and protection of stressed neuronal cells undergoing degeneration and

apoptosis (Singh et al. 1996). Importantly, antagonists of the 5-HT1A receptor represent a

major class of molecules with potential therapeutic effects in anxiety- or stress-related dis-

orders (Griebel 1999). Furthermore, 5-HT1A receptor levels have been shown to be increased

in schizophrenia (Sumiyoshi et al. 1996) and major depression (Fajardo et al. 2003). Inter-

estingly, several epidemiological studies have correlated altered serum cholesterol concen-

tration with major depressive disorder (MDD)-like symptoms and the prevalence of suicide in

humans (Papakostas et al. 2004). Such behavioral symptoms have earlier been partially
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attributed to disruptions in serotonergic signaling as a result of an alteration in serotonin

receptor function (Engelberg 1992; Vevera et al. 2005). A more detailed analysis of the effects

of modulating membrane cholesterol content on the function of such receptors could provide

insight into the etiology of such disorders.

The role of cholesterol in modulating the hippocampal 5-HT1A receptor function has been

explored earlier. Thus, depletion of cholesterol from native hippocampal membranes reduces

5-HT1A receptor functions such as ligand binding and G-protein coupling (Pucadyil and

Chattopadhyay 2004a). In addition, replenishment of cholesterol into cholesterol-depleted

membranes restored such functions to a significant extent thus pointing toward the specificity

of the requirement of cholesterol in receptor function. If the ligand binding function of the

5-HT1A receptor is determined by specific interaction between cholesterol and the receptor,

then such interaction would reach saturation at native levels of membrane cholesterol so that

any further enrichment in cholesterol content may not affect ligand binding function of the

receptor. In this paper, we tested this proposal by monitoring the effect of enrichment of

hippocampal membranes with cholesterol on the ligand binding and G-protein coupling of

5-HT1A receptors in such membranes.

Materials and Methods

Materials

BCA, cholesterol, DMPC, MbCD, EDTA, EGTA, MgCl2, MnCl2, Na2HPO4, iodoacetamide,

PMSF, 5-HT, p-MPPI, sucrose, polyethylenimine, sodium azide and Tris were obtained from

Sigma Chemical Co. (St. Louis, MO, USA). GTP-c-S was from Roche Applied Science

(Mannheim, Germany). BCA reagent kit for protein estimation was from Pierce (Rockford, IL,

USA). Amplex Red cholesterol assay kit was from Molecular Probes (Eugene, OR, USA).

[3H]8-OH-DPAT (sp. activity = 135.0 Ci/mmol) and [3H]p-MPPF (sp. activity = 70.5 Ci/

mmol) were purchased from DuPont New England Nuclear (Boston, MA, USA). GF/B glass

microfiber filters were from Whatman International (Kent, UK). All other chemicals used were

of the highest purity available. Water was purified through a Millipore (Bedford, MA, USA)

Milli-Q system and used throughout. Fresh bovine brains were obtained from a local

slaughterhouse within 10 min of death and the hippocampal region was carefully dissected out.

The hippocampi were immediately flash frozen in liquid nitrogen and stored at )70�C till

further use.

Preparation of Native Hippocampal Membranes

Native hippocampal membranes were prepared as described previously (Harikumar and

Chattopadhyay 1998). Briefly, bovine hippocampal tissue (~100 g) was homogenized as 10%

(w/v) in a polytron homogenizer in buffer A (2.5 mM Tris, 0.32 M sucrose, 5 mM EDTA,

5 mM EGTA, 0.02% sodium azide, 0.24 mM PMSF, 10 mM iodoacetamide, pH 7.4). The

homogenate was centrifuged at 900g for 10 min at 4�C. The resultant supernatant was filtered

through four layers of cheesecloth and centrifuged at 50,000g for 20 min at 4�C. The pellet

obtained was suspended in 10 vol. of buffer B (50 mM Tris, 1 mM EDTA, 0.24 mM PMSF,

10 mM iodoacetamide, pH 7.4) using a hand-held Dounce homogenizer and centrifuged at

50,000g for 20 min at 4�C. This procedure was repeated until the supernatant was clear. The

final pellet (native membranes) was suspended in a minimum volume of buffer C (50 mM Tris,

pH 7.4), homogenized using a hand-held Dounce homogenizer, flash frozen in liquid nitrogen

Biosci Rep (2006) 26:79–87 81

123



and stored at )70�C. Protein concentration was assayed using the BCA assay kit (Smith et al.

1985).

Cholesterol Enrichment of Native Membranes

Native hippocampal membranes were enriched with cholesterol using a water soluble cho-

lesterol-MbCD complex prepared as described previously (Pucadyil and Chattopadhyay

2004a), with a few modifications. Stock solutions of the cholesterol-MbCD complex (typically

containing 2:20 and 4:30 mM cholesterol:MbCD) were prepared by dissolving the required

amounts of cholesterol and MbCD in buffer C by constant shaking at room temperature

(25�C). Stock solutions were freshly prepared before each experiment. Native membranes

were incubated with the cholesterol-MbCD complex (final concentration being either 1:10 or

2:15 mM of cholesterol:MbCD) at a protein concentration of 2 mg/ml in buffer C for 1 h at

room temperature (25�C) under constant shaking. Membranes were then spun down at 50,000g

for 10 min at 4�C, washed once with buffer C and resuspended in the same buffer. Cholesterol

content in membranes was estimated using the Amplex Red cholesterol assay kit (Amundson

and Zhou 1999).

Estimation of Inorganic Phosphate

Concentration of lipid phosphate was determined subsequent to total digestion by perchloric

acid (McClare 1971) using Na2HPO4 as standard. DMPC was used as an internal standard to

assess lipid digestion. Samples without perchloric acid digestion produced negligible readings.

Radioligand Binding Assays

Receptor binding assays were carried out as described earlier (Kalipatnapu and Chattopadhyay

2004) with some modifications. Briefly, tubes in duplicate with 0.5 mg protein in a total

volume of 1 ml of buffer D (50 mM Tris, 1 mM EDTA, 10 mM MgCl2, 5 mM MnCl2, pH

7.4) for agonist binding studies, or in 1 ml of buffer E (50 mM Tris, 1 mM EDTA, pH 7.4) for

antagonist binding assays were used. Tubes were incubated with the radiolabeled agonist

[3H]8-OH-DPAT (final concentration in assay tube being 0.29 nM) or antagonist [3H]p-MPPF

(final concentration in assay tube being 0.5 nM) for 1 h at room temperature (25 �C). Non-

specific binding was determined by performing the assay either in the presence of 10 lM

serotonin (for agonist binding assays) or in the presence of 10 lM p-MPPI (for antagonist

binding assays). The binding reaction was terminated by rapid filtration under vacuum in a

Brandel cell harvester (Gaithersburg, MD, USA) through Whatman GF/B 2.5 cm diameter

glass microfiber filters (1.0 lm pore size) which were presoaked in 0.15% (w/v) polyethy-

lenimine for 1 h (Bruns et al. 1983). Filters were then washed 3 times with 3 ml of cold water

(4�C), dried and the retained radioactivity was measured in a Packard Tri-Carb 1500 liquid

scintillation counter using 5 ml of scintillation fluid.

GTP-c-S Sensitivity Assay

Agonist binding assays were carried out as described above in the presence of varying con-

centrations of GTP-c-S as described previously (Harikumar and Chattopadhyay 1999). The

concentrations of GTP-c-S leading to 50% inhibition of specific agonist binding (IC50) were

calculated by non-linear regression fitting of the data to a four parameter logistic function

(Higashijima et al. 1987):
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B ¼ a½1þ ðx=IÞs��1 þ b ð1Þ

where, B is the specific binding of the agonist normalized to control binding (in the absence of

GTP-c-S), x denotes concentration of GTP-c-S, a is the range (ymax)ymin) of the fitted curve on

the ordinate (y-axis), I is the IC50 concentration, b is the background of the fitted curve (ymin)

and s is the slope factor.

Results and Discussion

Native hippocampal membranes represent a relatively enriched natural source for the

G-protein coupled serotonin1A (5-HT1A) receptor (Pucadyil et al. 2005a; Kalipatnapu and

Chattopadhyay 2005). These membranes were enriched in cholesterol content using the water

soluble cholesterol:MbCD complex. Such a complex has earlier been reported to efficiently

catalyze cholesterol replenishment of cholesterol-depleted membranes (Pucadyil and Chatto-

padhyay 2004a) and enrichment of CHAPS-solubilized hippocampal membranes with cho-

lesterol (Chattopadhyay et al. 2005). As shown in Fig. 1, treatment of native hippocampal

membranes with increasing concentrations of cholesterol complexed with MbCD results in a

progressive increase in the cholesterol content. Thus, treatment of membranes with 1:10 and

2:15 mM of cholesterol:MbCD complex increases the membrane cholesterol content by ~33

and 38%, respectively. Importantly, the phospholipid content of membranes remained unal-

tered after this treatment (Fig. 1). The cholesterol to phospholipid ratio we observe in native

membranes is ~0.49 (mol/mol), similar to what we have reported earlier (Pucadyil and

Chattopadhyay 2004b). Treatment of native membranes with 1:10 and 2:15 mM of choles-

terol:MbCD complex increases this ratio to ~0.67 and 0.78, respectively.

We monitored the effect of such enrichment in the cholesterol content of hippocampal

membranes on the ligand binding and G-protein coupling of 5-HT1A receptors. The agonist

8-OH-DPAT and antagonist p-MPPF ligands have earlier been well characterized to bind the

5-HT1A receptor with high affinity and specificity (Arvidsson et al. 1981; Gozlan et al. 1983;

Kung et al. 1994; Barr and Manning 1997). Importantly, radioligand binding analyses with

such ligands have earlier provided information on 5-HT1A receptor properties such as the
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proportion of receptors coupled to G-proteins while it exists in a native membrane

environment (Harikumar and Chattopadhyay 1999; Javadekar-Subhedar and Chattopadhyay

2004). Figure 2 shows the specific agonist [3H]8-OH-DPAT and antagonist [3H]p-MPPF

binding to 5-HT1A receptors in cholesterol-enriched membranes. As is apparent from the

figure, enrichment of cholesterol by ~38% results in a small (20%) reduction in specific

binding of the agonist [3H]8-OH-DPAT to the 5-HT1A receptor with no significant effect on

the specific binding of the antagonist [3H]p-MPPF.

The 5-HT1A receptor is negatively coupled to adenylate cyclase through pertussis toxin-

sensitive G-proteins (Emerit et al. 1990). Sensitivity of specific agonist [3H]8-OH-DPAT

binding to guanine nucleotides and hence the G-protein coupling status of the receptor can be

monitored by performing agonist binding assays in the presence of GTP-c-S, a non-hydro-

lyzable analogue of GTP (Harikumar and Chattopadhyay 1999). Thus, the presence of GTP-c-

S induces transition of the receptor from a high affinity to a low affinity state. Figure 3 shows

the inhibition of specific [3H]8-OH-DPAT binding to the 5-HT1A receptor in presence of GTP-

c-S in a characteristic concentration-dependent manner in native and cholesterol-enriched

membranes. The half maximal inhibition concentration (IC50) value for inhibition of specific

[3H]8-OH-DPAT binding by GTP-c-S is ~63 nM in native membranes, similar to what we

reported earlier (Harikumar and Chattopadhyay 1999; Kalipatnapu and Chattopadhyay 2004;

Pucadyil and Chattopadhyay 2004a). However, the inhibition curve for the cholesterol-

enriched membranes exhibits no significant change in the IC50 value (~45 nM). This indicates

that the sensitivity of specific agonist binding to GTP-c-S is similar in native and cholesterol-

enriched membranes indicating that the G-protein coupling of the receptor is not affected upon

cholesterol enrichment. It must be mentioned here that G-protein coupling of the 5-HT1A

receptor is significantly compromised upon depletion of cholesterol from hippocampal

membranes, with the GTP-c-S sensitivity of agonist binding displaying a ~2.5 fold shift toward

higher concentrations of GTP-c-S in cholesterol-depleted membranes (Pucadyil and Chatto-

padhyay 2004a).

The lack of any significant effect of cholesterol enrichment on the 5-HT1A receptor function

(ligand binding and G-protein coupling) is surprising considering earlier studies that have

assessed the modulatory role of cholesterol on membrane protein function. Such studies have

indicated that membrane proteins show optimal function in native membranes containing

natural levels of cholesterol. Thus, the GABAA receptor functions most efficiently in native
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hippocampal membranes containing natural levels of cholesterol (Sooksawate and Simmonds

1998, 2001), with an increase or decrease in the cholesterol level leading to reduction in

receptor function. These results have been interpreted to be due to a specific requirement of

cholesterol at native levels to maintain optimal GABAA receptor function possibly through a

specific cholesterol–receptor interaction, while the reduction in function due to cholesterol

enrichment being due to an alteration in membrane physical properties.

Our results suggest that the 5-HT1A receptor ligand binding remains unaltered upon cho-

lesterol enrichment of hippocampal membranes. Since the enrichment of cholesterol does not

significantly affect the 5-HT1A receptor ligand binding whereas cholesterol depletion reduces

receptor function (Pucadyil and Chattopadhyay 2004a), it appears that the concentration of

cholesterol in native membranes is sufficient for proper receptor function. We have earlier

shown that oxidation of membrane cholesterol to cholestenone results in a marked reduction in

the 5-HT1A receptor ligand binding function (Pucadyil et al. 2005b). Interestingly, while

cholesterol oxidation reduces the functionality of cholesterol, it does not dramatically perturb

the bulk membrane physical properties as measured by fluorescence polarization of mem-

brane-embedded probes. Thus, a reduction in the 5-HT1A receptor function observed under

such conditions possibly suggests the presence of a specific cholesterol–receptor interaction

that supports ligand binding activity. If the cholesterol concentration present in native mem-

branes is sufficient to completely fulfill such a specific cholesterol–receptor interaction, then

further enrichment of cholesterol would bear no functional consequence to receptor function.

This could perhaps explain our results on the relative insensitivity of ligand binding of 5-HT1A

receptors to cholesterol-enrichment. In summary, our present results provide new information

on the effect of cholesterol enrichment on the 5-HT1A receptor function in hippocampal

membranes. In a broader context, these results are relevant in understanding the role of

the membrane lipid environment on the functioning of G-protein coupled transmembrane

receptors in general.
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Parks CL, Robinson PS, Sibille E, Shenk T, Tóth M (1998) Increased anxiety of mice lacking the serotonin1A

receptor. Proc Natl Acad Sci USA 95:10734–10739
Pucadyil TJ, Chattopadhyay A (2004a) Cholesterol modulates ligand binding and G-protein coupling to sero-

tonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200
Pucadyil TJ, Chattopadhyay A (2004b) Exploring detergent insolubility in bovine hippocampal membranes: a

critical assessment of the requirement for cholesterol. Biochim Biophys Acta 1661:9–17
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005a) The serotonin1A receptor: a representative member of the

serotonin receptor family. Cell Mol Neurobiol 25:553–580
Pucadyil TJ, Shrivastava S, Chattopadhyay A (2005b) Membrane cholesterol oxidation inhibits ligand binding

function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 331:422–427
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998)

Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA
95:14476–14481

Rocha BA, Scearce-Levie K, Lucas JJ, Hiroi N, Castanon N, Crabbe JC, Nestler EJ, Hen R (1998) Increased
vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175–178

Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Tóth M (2000) Impaired hippocampal-dependent
learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proc Natl
Acad Sci USA 97:14731–14736

Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C (1995) Cholesterol domains in biological
membranes. Mol Membr Biol 12:113–119

Singh JK, Chromy BA, Boyers MJ, Dawson G, Banerjee P (1996) Induction of the serotonin1A receptor in
neuronal cells during prolonged stress and degeneration. J Neurochem 66:2361–2372

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson
BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

Sooksawate T, Simmonds MA (1998) Increased membrane cholesterol reduces the potentiation of GABAA

currents by neurosteroids in dissociated hippocampal neurones. Neuropharmacology 37:1103–1110
Sooksawate T, Simmonds MA (2001) Effects of membrane cholesterol on the sensitivity of the GABAA receptor

to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40:178–184
Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased

in postmortem prefrontal cortex in schizophrenia. Brain Res 708:209–214
Vevera J, Fisar Z, Kvasnicka T, Zdenek H, Starkova L, Ceska R, Papezova H (2005) Cholesterol-lowering

therapy evokes time-limited changes in sertonergic transmission. Psychiatry Res 133:197–203

Biosci Rep (2006) 26:79–87 87

123


