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The serotonin1A (5-HT1A) receptors are important members of the superfamily of seven
transmembrane domain G-protein coupled receptors. They appear to be involved in various
behavioral, cognitive and developmental functions. Mammalian cells in culture heterolo-
gously expressing membrane receptors represent convenient systems to address problems in
receptor biology. We report here the pharmacological characterization of one of the first
isolated clones of CHO cells stably expressing the human 5-HT1A receptor using the
selective agonist 8-OH-DPAT and antagonist p-MPPF. In addition, we demonstrate that
agonist and antagonist binding to the receptor exhibit differential sensitivity to the non-
hydrolyzable GTP analogue, GTP-c-S, as was observed earlier with the native receptor from
bovine hippocampus. These results show that the human 5-HT1A receptor expressed in
CHO cells displays characteristic features found in the native receptor isolated from bovine
hippocampus and promises to be a potentially useful system for future studies of the
receptor.
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ABBREVIATIONS: GPCR, G-protein coupled receptor; 5-HT1A receptor, 5-hydroxy-
tryptamine-1A receptor; 8-OH-DPAT, 8-hydroxy-2(di-N-propylamino)tetralin; GTP-c-S,
guanosine-50-O-(3-thiotriphosphate); p-MPPI, 4-(20-methoxy)-phenyl-1-[20-(N-200-pyridi-
nyl)-p-iodobenzamido]ethyl-piperazine; PMSF, phenylmethylsulfonyl fluoride; 5-HT, sero-
tonin; p-MPPF, 4-(20-methoxy)-phenyl-1-[20-(N-200-pyridinyl)-p-fluorobenzamido]ethyl-
piperazine.

INTRODUCTION

Serotonin (5-hydroxytryptamine or 5-HT) is an intrinsically fluorescent [1], biogenic
amine which acts as a neurotransmitter and is found in a wide variety of sites in the
central and peripheral nervous systems [2]. Serotonergic signaling appears to play a
key role in the generation and modulation of various cognitive and behavioral
functions such as sleep, mood, pain, addiction, locomotion, sexual activity,
depression, anxiety, alcohol abuse, aggression and learning [3–7]. Disruptions in
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serotonergic systems have been implicated in the etiology of mental disorders such
as schizophrenia, migraine, depression, suicidal behavior, infantile autism, eating
disorders, and obsessive–compulsive disorder [4, 8–10]. In addition, recent studies
indicate that serotonin receptors play a crucial role in brain development processes
such as neurogenesis and axonal branching during various stages of development
[7, 11].

Serotonin exerts its diverse actions by binding to distinct cell surface receptors
which have been classified into many groups [12, 13]. Serotonin receptors are
members of a superfamily of seven transmembrane domain receptors [14] that couple
to GTP-binding regulatory proteins (G-proteins) [15]. Among the 14 subtypes of
serotonin receptors, the G-protein coupled 5-HT1A receptor subtype is the most
extensively studied for a number of reasons. One of the main reasons for this is the
availability of a selective ligand 8-hydroxy-2(di-N-propyl)tetralin (8-OH-DPAT)
that allows extensive biochemical, physiological, and pharmacological character-
ization of the receptor [16]. The 5-HT1A receptor was the first among all the
serotonin receptors to be cloned and sequenced [17–19]. The human, rat, and mouse
5-HT1A receptors have been cloned, and their amino acid sequences deduced [18–20].
Sequence analysis of the 5-HT1A receptor gene has shown that it belongs to the
superfamily of G-protein-coupled receptors, with 50% amino acid homology in the
transmembrane domain with the b2-adrenergic receptor. Furthermore, it was the first
serotonin receptor for which polyclonal antibodies were obtained [18, 21–23]
allowing their visualization at the subcellular level in various regions of the brain. On
the clinical front, 5-HT1A receptor levels have been shown to be increased in
schizophrenia [24, 25]. Interestingly, a recent observation has associated genetic
polymorphisms exhibited at the upstream repressor region of the 5-HT1A receptor
gene to major depression and suicide in humans [26]. The 5-HT1A receptor has
recently been shown to have a role in neural development [27] and protection of
stressed neuronal cells undergoing degeneration and apoptosis [28, 29]. In addition,
the 5-HT1A receptor antagonists represent a major class of molecules with potential
therapeutic effects in anxiety- or stress-related disorders [30]. We have earlier solu-
bilized and partially purified the 5-HT1A receptor from bovine hippocampus [31, 32]
and have shown modulation of ligand binding to the bovine hippocampal 5-HT1A

receptor by metal ions, guanine nucleotides, alcohols, local anesthetics, membrane
cholesterol, and covalent modifications of the disulfides and sulfhydryl groups
[33–40].

Mammalian cells in culture heterologously expressing membrane receptors
represent convenient systems to address problems in receptor biology due to higher
expression levels of the receptors [41]. Keeping this in mind, we recently solubilized
the human 5-HT1A receptor stably expressed in CHO cells in a functionally active
form [42]. In light of the potential anomalies associated with heterologous receptor
expression systems such as multiple affinity states [43] and variations between
experimental data from different laboratories on account of different protocols for
creation and isolation of stable expression clones, we report here the pharmaco-
logical characterization of one of the first isolated [44] clones of CHO cells stably
expressing the human 5-HT1A receptor using the selective agonist 8-OH-DPAT and
antagonist 4-(20-methoxy)-phenyl-1-[20-(N-200-pyridinyl)-p-fluorobenzamido]ethyl-
piperazine (p-MPPF). In addition, we demonstrate that agonist and antagonist
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binding to the receptor exhibit differential sensitivity to the non-hydrolyzable GTP
analogue, GTP-c-S, as was observed earlier with the native receptor from bovine
hippocampus. These results show that the human 5-HT1A receptor expressed in
CHO cells displays characteristic features found in the native receptor isolated from
bovine hippocampus.

MATERIALS AND METHODS

Materials

EDTA, fetal calf serum, MgCl2, MnCl2, 8-OH-DPAT, p-MPPI, penicillin,
streptomycin, gentamycin sulfate, PMSF (phenylmethylsulfonyl fluoride), 5-HT
(serotonin), sodium bicarbonate, polyethylenimine, and Tris were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). D-MEM/F-12 (Dulbecco’s Modified
Eagle Medium: nutrient mixture F-12 (Ham) (1:1)) and geneticin (G 418) were from
Life Technologies (Grand Island, NY, USA). GTP-c-S (guanosine-50-O-(3-thiotri-
phosphate)) was from Roche Applied Science (Mannheim, Germany). BCA (bi-
cinchoninic acid) reagent kit for protein estimation was from Pierce (Rockford, IL,
USA). [3H]8-OHDPAT (sp. activity¼123.0 Ci/mmol) and [3H]p-MPPF (sp. activ-
ity=70.5 Ci/mmol) were purchased from DuPont New England Nuclear (Boston,
MA, USA). GF/B glass microfiber filters were from Whatman International (Kent,
UK). All other chemicals used were of the highest purity available. Water was purified
through a Millipore (Bedford, MA, USA) Milli-Q system and used throughout.

Cells and Cell Culture

The intronless human genomic clone G-21 [18] which encodes the human sero-
tonin1A receptor was used to generate stable transfectants in CHO cells. These cells
heterologously expressing the human serotonin1A receptor, originally referred to as T-
CHO [44],were a generous gift fromDr. ProbalBanerjee (College of Staten Island,City
University ofNewYork,USA). These cells will be referred to asCHO-5-HT1AR in this
report. Cells were grown in D-MEM/F-12 (1:1) supplemented with 2.4 g/l of sodium
bicarbonate, 10% fetal calf serum, 60 lg/ml penicillin, 50 lg/ml streptomycin, 50 lg/
ml gentamycin sulfate and 200 lg/ml geneticin in a humidified atmosphere with 5%
CO2 at 37 �C.

Preparation of Cell Membranes

Cell membranes were prepared as described earlier [42]. Confluent cells were
harvested by treatment with ice-cold buffer containing 10 mM Tris, 5 mM EDTA,
0.1 mM PMSF, pH 7.4. Cells were then homogenized for 10 s at 4 �C at maximum
speed with a Polytron homogenizer. The cell lysate was centrifuged at 500 · g for
10 min at 4 �C and the resulting post-nuclear supernatant was centrifuged at
40,000 · g for 30 min at 4 �C. The pellet thus obtained was suspended in 50 mM Tris
buffer, pH 7.4, flash frozen in liquid nitrogen and stored at )70 �C till further use.
Total protein concentration inmembranes thus isolatedwas determined using theBCA
assay kit [45].
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Radioligand Binding Assays

Receptor binding assays were carried out as described earlier with some mod-
ifications [33]. Briefly, tubes in duplicate with 40 lg total protein in a volume of 1 ml
of buffer A (50 mM Tris, 1 mM EDTA, 10 mM MgCl2, 5 mM MnCl2, pH 7.4) for
agonist binding studies, or in 1 ml of buffer B (50 mM Tris, 1 mM EDTA, pH 7.4)
for antagonist binding assays were used. Tubes were incubated with the radiolabeled
agonist [3H]8-OH-DPAT (final concentration in assay tube being 0.29 nM) or
antagonist [3H]p-MPPF (final concentration in assay tube was 0.5 nM) for 1 h at
room temperature (25 �C). Non-specific binding was determined by performing the
assay either in the presence of 10 lM serotonin (for agonist binding assays) or in the
presence of 10 lM p-MPPI (for antagonist binding assays). The binding reaction
was terminated by rapid filtration under vacuum in a Brandel cell harvester (Gai-
thersburg, MD, USA) through Whatman GF/B 2.5 cm diameter glass microfiber
filters (1.0 lm pore size) which were presoaked in 0.15% (w/v) polyethylenimine for
1 h [46]. The filters were then washed three times with 3 ml of cold water (4 �C),
dried and the retained radioactivity was measured in a Packard Tri-Carb 1500 liquid
scintillation counter using 5 ml of scintillation fluid.

GTP-c-S Sensitivity Assay

For experiments in which GTP-c-S was used, ligand binding assays were per-
formed in the presence of varying concentrations of GTP-c-S in buffer A for agonist
binding and buffer B with 2 mM MgCl2 for antagonist binding studies. The con-
centrations of GTP-c-S leading to 50% inhibition of specific agonist binding (IC50)
were calculated by non-linear regression fitting of the data to a four parameter
logistic function [47]:

B ¼ a

1þ ðx=IÞS
þ b; ð1Þ

where B is the specific binding of the agonist normalized to control binding (in the
absence of GTP-c-S), x denotes concentration of GTP-c-S, a is the range
(ymax � ymin) of the fitted curve on the ordinate (y-axis), I is the IC50 concentration, b
is the background of the fitted curve (ymin) and S is the slope factor.

Saturation Radioligand Binding Assays

Saturation binding assays were carried out with varying concentrations (0.1–
7.5 nM) of the radiolabeled agonist [3H]8-OH-DPAT and antagonist [3H]p-MPPF
under conditions as described above. Non-specific binding was measured in the
presence of 10 lM serotonin for agonist and 10 lM p-MPPI for antagonist binding.
Binding data were analyzed as described previously [38]. The concentration of the
bound radioligand (RL*) was calculated from the equation:

RL� ¼ 10�9 � B=ðV� SA� 2220ÞM; ð2Þ

104 Kalipatnapu, Pucadyil, Harikumar, and Chattopadhyay



where B is the bound radioactivity in disintegrations per minute (dpm) (i.e., total
dpm - non-specific dpm), V the assay volume in ml, and SA is the specific activity of
the radioligand. The data could be fitted best to a one site ligand binding equation.
The dissociation constant (Kd) and maximum binding sites (Bmax) were calculated by
non-linear regression analysis of binding data using the HOT module of the
LIGAND program (Biosoft, Cambridge, UK) [48,49]. Data obtained after regres-
sion analysis were used to plot graphs with the GRAFIT program version 3.09b
(Erithacus Software, Surrey, UK).

Competition Binding Assays

Competition binding assays against the radiolabeled agonist [3H]8-OH-DPAT
(0.29 nM) and antagonist [3H]p-MPPF (0.5 nM) were carried out in presence of a
range of concentrations (typically from 10)12 to 10)5 M) of the unlabeled compet-
itor. The concentration of the bound radiolabeled ligand was calculated from
equation 2. Data for the competition assays were analyzed using equation 1 to
obtain the IC50 concentrations of the unlabeled competitor ligand. Binding param-
eters, namely dissociation constant (Kd) and maximum binding sites (Bmax), were
calculated from the following equations as previously described [50, 51]:

Kd ¼ IC50 � L; ð3Þ

Bmax ¼ B� ðIC50=LÞ; ð4Þ

where L is the concentration of the radiolabeled ligand, (0.29 nM for the agonist and
0.5 nM for the antagonist) used in the assay and B is the concentration of the bound
ligand in the absence of the competitor. The affinity of the displacing ligands are
expressed as the apparent dissociation constant (Ki) for the competing ligands, where
Ki is calculated using the Cheng–Prusoff equation [52]:

Ki ¼ IC50=½1þ ð½L�=KdÞ�; ð5Þ

where IC50 is the concentration of the competing ligand leading to 50% inhibition of
specific binding and [L] and Kd are the concentration and dissociation constant of
the labeled ligand. Kd values are those determined from saturation binding assays for
the respective radioligand.

RESULTS

Linearity of Radioligand Binding with Increasing Concentrations of Total Protein

The development of selective 5-HT1A antagonists has been relatively slow and
less successful although selective 5-HT1A agonists such as 8-OH-DPAT were
discovered long back [16]. This is reflected in the relatively few reports describing
specific antagonist binding properties in heterologously expressed 5-HT1A receptors.
A few years back, two specific antagonists for the 5-HT1A receptor, p-MPPI and
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p-MPPF, have been introduced [53–55]. These compounds bind specifically to 5-
HT1A receptors with high affinity.

We have pharmacologically characterized binding of the selective 5-HT1A

receptor agonist [3H]8-OH-DPAT and antagonist [3H]p-MPPF to cell membranes
prepared from CHO cells that stably express 5-HT1A receptors. Figure 1 shows that
the binding of the radiolabeled ligands is linear over a broad range of protein
concentrations. Non-specific binding defined with 10 lM serotonin for agonist
binding and 10 lM p-MPPI for antagonist binding was ~10% or less than the total
binding. These results suggest that under the conditions of the assay (i.e., with
0.29 nM of [3H]8-OH-DPAT or 0.5 nM of [3H]p-MPPF, and using 40 lg total
protein for ligand binding assays as described later), there is no significant depletion
of the radiolabel during the course of the assay. In other words, these conditions are
appropriate for analyzing binding parameters of the receptor using the radiolabled
agonist and antagonist [56]. In addition, these results suggest that the incubation
time of 1 h for the assay is sufficient for radioligand binding to have reached equi-
librium conditions. As a control, we checked specific binding of [3H]8-OH-DPAT
and [3H]p-MPPF to membranes prepared from untransfected CHO cells. There was
no detectable binding observed with these membranes.

Saturation Binding Analysis of Radiolabeled Agonist and Antagonist

The saturation binding analyses of the specific agonist [3H]8-OH-DPAT and
antagonist [3H]p-MPPF binding to 5-HT1A receptors from CHO-5-HT1AR mem-
branes were carried out using a range of concentration (0.1–7.5 nM) of the radio-
labeled ligands and the binding plots are shown in Figs. 2 and 3. The data for
saturation binding were analyzed using the LIGAND program and the binding
parameters are shown in Table 1. Importantly, our estimated Kd value (~0.38 nM)
for [3H]8-OH-DPAT binding to 5-HT1A receptors in CHO-5-HT1AR membranes is
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Fig. 1. Fold change in specific binding of the agonist [3H]8-OH-DPAT (- - -�- - -) and antagonist [3H]p-

MPPF (—•—) to 5-HT1A receptors from CHO-5-HT1AR cell membranes with increasing amounts of total

membrane protein. Values have been normalized with respect to specific binding obtained with 40 lg total

protein in the assay. Concentrations of [3H]8-OH-DPAT (0.29 nM) and [3H]p-MPPF (0.5 nM) were kept

constant in the assay. Data shown are means of duplicate points from a representative experiment. See

Materials and Methods for other details.
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Fig. 2. Saturation binding analysis of specific [3H]8-OH-DPAT binding to 5-HT1A receptors from CHO-

5-HT1AR cell membranes. A representative plot is shown for specific [3H]8-OH-DPAT binding with

increasing concentrations (0.1-7.5 nM) of free [3H]8-OH-DPAT. The curve is a non-linear regression fit to

the experimental data using the LIGAND program. See Materials and Methods and Table 1 for other

details.
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Fig. 3. Saturation binding analysis of specific [3H]p-MPPF binding to 5-HT1A receptors from CHO-5-

HT1AR cell membranes. A representative plot is shown for specific [3H]p-MPPF binding with increasing

concentrations (0.1–7.5 nM) of free [3H]p-MPPF. The curve is a non-linear regression fit to the experi-

mental data using the LIGAND program. See Materials and Methods and Table 1 for other details.

Table 1. Binding parametersa of the agonist [3H]8-OH-DPAT and antagonist [3H]p-MPPF binding

to 5-HT1A receptors from CHO-5-HT1AR cells.

Ligand Kd (nM) Bmax (pmol/mg of protein)

[3H]8-OH-DPAT 0.38±0.13 1.24±0.09

[3H]p-MPPF 3.51±0.48 3.93±0.39

aBinding parameters were calculated by analyzing saturation binding isotherms with a range (0.1–7.5 nM)

of both radioligands using the LIGAND program. The data shown in the table represent the

means±SEM of three independent experiments. See Materials and Methods for other details.
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in excellent agreement with the Kd value reported earlier by us for the native bovine
hippocampal 5-HT1A receptor [33, 35, 37–39]. Moreover, this is also in agreement
with the Kd values for recombinant 5-HT1A receptors reported by other groups [57,
58]. Table 1 also shows that the 5-HT1A receptors expressed in CHO- 5-HT1AR cells
bind to [3H]p-MPPF with a Kd of ~3.51 nM, in good agreement with the affinity
displayed by the native hippocampal receptor [35, 37, 38] and with earlier reported
value for [3H]p-MPPF binding to heterologously expressed 5-HT1A receptors [59].

Competition Binding Analysis of Radiolabeled Agonist and Antagonist

Further pharmacological characterization of the specific agonist and antagonist
binding was carried out by performing competition binding experiments in presence
of unlabeled ligands which act as competitors. Figs. 4 and 5 show the competition
displacement curves of specific agonist [3H]8-OH-DPAT by the competing ligands 8-
OH-DPAT and 5-HT, and of the antagonist [3H]p-MPPF by p-MPPI for 5-HT1A

receptors from CHO-5-HT1AR membranes. The half maximal inhibition concen-
trations (IC50) and the inhibition constants (Ki) for the competing ligands are shown
in Table 2.

Based on the formalism developed earlier [50,51], binding parameters obtained
from saturation binding analysis (see Table 1) were compared with those obtained
from competition binding analysis with similar ligands but in their unlabeled form
acting as competitors. The binding parameters, namely Kd and Bmax, thus obtained
are reported in Table 3. As shown in the table, these values are in good agreement
with values reported in Table 1. This self-consistency in the binding parameters
irrespective of the method of analysis lends further reliability to the parameters
reported by us.
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details.
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Table 2. Competition binding analysisb of [3H]8-OH-DPAT and [3H]p-MPPF binding to 5-HT1A

receptors from CHO-5-HT1AR cells.

[3H]8-OH-DPAT [3H]p-MPPF

Competing ligand IC50 (nM) Ki (nM) IC50 (nM) Ki (nM)

8-OH-DPAT 0.64±0.02 0.36±0.01 – –

5-HT 0.36±0.04 0.21±0.02 – –

p-MPPI – – 5.03±0.61 4.4±0.53

bCompetition binding data were analyzed using equation 1 to determine IC50 values. The Ki values were

obtained using equation 5 for which the Kd values were obtained from Table 1. Binding of [3H]8-OH-

DPAT (0.29 nM) and [3H]p-MPPF (0.5 nM) was competed out with a range of concentrations of the

unlabeled ligands. The data represent the means ± SEM of three independent experiments. See Materials

and Methods for other details.

Table 3. Binding parametersc for [3H]8-OH-DPAT and [3H]p-MPPF obtained from competition binding

experiments from CHO-5-HT1AR cells.

[3H]8-OH-DPAT [3H]p-MPPF

Competing ligand Kd (nM) Bmax (pmol/mg protein) Kd (nM) Bmax (pmol/mg protein)

8-OH-DPAT 0.35±0.02 1.67±0.08 – –

p-MPPI – – 4.53±0.61 8.36±1.38

cCompetition binding data were analyzed with a range of concentrations of unlabeled 8-OH-DPAT

against [3H]8-OH-DPAT (0.29 nM) and with unlabeled p-MPPI against [3H]p-MPPF (0.5 nM). Binding

parameters were calculated using eqs. 3 and 4 from the IC50 values reported in Table 2. The data represent

the means ± SEM of three independent experiments. See Materials and Methods for other details.
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Sensitivity of Ligand Binding to GTP-c-S

Most of the seven transmembrane domain receptors are coupled to G-proteins
[15], and guanine nucleotides are known to regulate ligand binding. The 5-HT1A

receptor agonists such as 8-OH-DPAT are known to specifically activate the Gi/Go

class of G-proteins [60, 61]. In contrast, antagonists do not catalyze the activation of
G-proteins [53]. Therefore, agonist binding to such receptors displays sensitivity to
agents that uncouple the normal cycle of guanine nucleotide exchange at the G-
protein alpha subunit caused by activation of the receptor. Sensitivity of agonist
binding to guanine nucleotides can be monitored by performing ligand binding
assays in the presence of GTP-c-S, a non-hydrolyzable analogue of GTP.

We have previously shown that the specific binding of the agonist [3H] 8-OH-
DPAT to bovine hippocampal 5-HT1A receptors is sensitive to guanine nucleotides
and is inhibited with increasing concentrations of GTP-c-S [35, 62]. Our results
showed that in presence of GTP-c-S, the 5-HT1A receptor undergoes an affinity
transition, from a high affinity G-protein coupled to a low affinity G-protein
uncoupled state [35]. In agreement with these results, Figure 6 shows a characteristic
reduction in binding of the agonist [3H]8-OH-DPAT in presence of a range of
concentration of GTP-c-S with an estimated IC50 of 3.7±0.9 nM. This indicates that
the human 5-HT1A receptor is coupled to G-proteins when heterologously expressed
in CHO cells and exhibits typical sensitivity to GTP-c-S, a characteristic feature of
the native hippocampal receptor.

In contrast to the agonist binding, antagonist [3H]p-MPPF binding to 5-HT1A

receptors from the bovine hippocampus has previously been shown to be insensitive
to GTP-c-S [35, 38]. Figure 6 shows that the specific [3H]p-MPPF binding to 5-HT1A

receptors from CHO cells remains invariant over a large range of concentrations of
GTP-c-S, in a manner analogous to what is observed with the native receptor from
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Fig. 6. Effect of increasing concentrations of GTP-c-S on the specific binding of the agonist [3H]8-OH-

DPAT (o) and antagonist [3H]p-MPPF (•) to 5-HT1A receptors from CHO-5-HT1AR cell membranes.

Values are expressed as a percentage of the specific binding obtained in the absence of GTP-c-S. The curve
associated with [3H]8-OH-DPAT binding is a non-linear regression fit to the experimental data using

equation 1. The data points represent means ± SEM of duplicate points from three independent exper-

iments. See Materials and Methods for other details.
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bovine hippocampus. This implies that the agonist 8-OH-DPAT and the antagonist
p-MPPF binding can be used to differentially discriminate G-protein coupling of the
5-HT1A receptor in CHO cells. Interestingly, the Bmax values reported in Table 1 for
5-HT1A receptors using the antagonist [3H]p-MPPF are far greater (~3 fold higher)
than that obtained using agonist [3H]8-OH-DPAT. This has been previously shown
for native systems such as rat hippocampus [53] and bovine hippocampus [35, 38].
Since the binding of the antagonist [3H]p-MPPF is unaffected by GTP-c-S (Fig. 6) it
indicates that [3H]p-MPPF binds to all available populations of the receptor, those
coupled to G-proteins and free (not coupled to G-proteins) receptors. The Bmax

value for the antagonist [3H]p-MPPF therefore is greater than the corresponding
value for the agonist [3H]8-OH-DPAT, which would predominantly bind to
G-protein coupled form of the receptor. Since endogenous G-proteins could be in
limiting amounts compared to heterologously expressed receptors in such expression
systems [63], the Bmax values of the agonist and antagonist may tend to display
greater differences in such systems compared to native systems. However, the ligand
binding affinities of the 5-HT1A receptor from CHO cells and native systems are in
good agreement and therefore the pharmacological characteristics of the receptor
appear to be preserved in CHO-5-HT1AR cells.

DISCUSSION

G-protein-coupled receptors (GPCRs) constitute a superfamily of proteins
whose function is to transmit information across a cell membrane from the extra-
cellular environment to the interior of the cell thus providing a mechanism of
communication between the exterior and the interior of the cell [64, 14]. Such a
process requires that the signal transduction be specific to the initiating stimulus and
have well defined intracellular sequence of events. GPCRs represent the single largest
family of cell surface receptors involved in signal transduction. This receptor
superfamily includes over 2000 receptors which respond to a variety of molecules
such as neurotransmitters, hormones, taste and odorant molecules, and even pho-
tons, thus mediating a multitude of functions. These transmembrane receptors act as
key players in diverse physiological processes such as neurotransmission, cellular
metabolism, secretion, cellular differentiation and growth, and inflammatory and
immune responses. GCPRs therefore represent major targets for the development of
novel drug candidates in all clinical areas [65]. It is estimated that >50% of the
drugs in the market act as either surrogate activators or inhibitors of GPCRs that
have defined native ligands which points out the immense therapeutic potential of
these receptors [66]. As mentioned earlier, the 5-HT1A receptors are important
representative members of the superfamily of GPCRs.

One of the approaches for performing pharmacological studies on GPCRs is to
use a functional receptor system that converts ligand interaction with the receptor
into a cellular signal which allows to monitor the relationship between concentration
and response [63]. With the advent of molecular biology, there has been an increasing
number of genetically engineered recombinant receptor systems for the study of drug–
receptor interactions. This has led to a corresponding increase in the testing of new
drugs in recombinant receptor systems. However, differences in host membrane lipid
composition and the relative stoichiometry of the receptor to other cellular compo-

1115-HT1A receptors in CHO cells



nents from that found in the natural system may complicate interpretation of drug
testing results in such systems. It is therefore judicious to monitor receptor–ligand
interactions in heterologous systems with the goal of critically assessing how closely
they reflect the pharmacological characteristics of the native system.

We report here the pharmacological characterization of one of the first stable
human serotonin1A receptor expression systems in CHO cells using the selective
agonist [3H]8-OH-DPAT and the antagonist [3H]p-MPPF. Our results show that
5-HT1A receptors heterologously expressed in CHO cells display ligand binding
properties that are in good agreement to what is observed with native receptors such
as the bovine hippocampal 5-HT1A receptors. More importantly, we demonstrate
that the differential discrimination of G-protein coupling by the agonist 8-OH-
DPAT and the antagonist p-MPPF, a hallmark of the native receptor, is preserved
for the receptor expressed in CHO cells.

Since native tissues (of neuronal origin in particular) often have very low
quantities of a specific type of receptor, solubilization and purification of neuronal
receptors from native sources continue to be challenging issues in contemporary
membrane biology. Effective solubilization and purification of membrane receptors
with optimum ligand binding activity and intact signal transduction components
represent important steps in understanding structure–function relationship and
pharmacological characterization of a specific receptor, and may constitute the first
step in the detailed molecular characterization of GPCRs. It is in this context that
heterologously expressed membrane receptors assume significance. Although the
5-HT1A receptor has been heterologously and stably expressed in fibroblast cells
earlier [44, 57], no attempts have so far been made to solubilize the heterologously
expressed receptor in a functional form. We have recently reported effective solu-
bilization of 5-HT1A receptors in a functionally active form from CHO-5-HT1AR
cells using the mild zwitterionic detergent CHAPS [42]. This system therefore should
provide a useful model system to understand 5-HT1A receptor biology.
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