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Abstract

The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein cou-

pled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is

dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guan-

ine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even

in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays

toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide

novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the

5-HT1A receptor in particular, and GPCRs in general.

� 2004 Elsevier Inc. All rights reserved.
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Serotonin (5-hydroxytryptamine or 5-HT) is an

intrinsically fluorescent [1], biogenic amine which acts

as a neurotransmitter and is found in a wide variety of

sites in the central and peripheral nervous systems [2].

Serotonergic signaling appears to play a key role in

the generation and modulation of various cognitive
and behavioral functions including sleep, mood, pain,

addiction, locomotion, sexual activity, depression, anxi-

ety, alcohol abuse, aggression, and learning [3,4]. Dis-

ruptions in serotonergic systems have been implicated
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in the etiology of mental disorders such as schizophre-

nia, migraine, depression, suicidal behavior, infantile

autism, eating disorders, and obsessive compulsive dis-

order [3,5].

Serotonin exerts its diverse actions by binding to dis-

tinct cell surface receptors which have been classified
into many groups [6]. Serotonin receptors are members

of a superfamily of seven transmembrane domain G-

protein coupled receptors [7] that couple to and trans-

duce signals via guanine nucleotide binding regulatory

proteins (G-proteins) [8]. Among the 14 subtypes of

serotonin receptors, the G-protein coupled 5-HT1A

receptor is the best characterized for a number of rea-

sons [9,10]. We have earlier partially purified and solubi-
lized the 5-HT1A receptor from bovine hippocampus in

a functionally active form [11,12]. We have also reported

the solubilization of 5-HT1A receptors stably expressed

in Chinese hamster ovary (CHO) cells [13]. In addition,

we have shown modulation of ligand binding to 5-HT1A

receptors by metal ions [9,14], agents that perturb
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Table 1

Extent of inhibition in specific [3H]8-OH-DPAT binding in the

presence of GTP-c-S and IC50 values of GTP-c-S at different

concentrations of MgCl2
a

Concentration of

MgCl2 (mM)

Extent of inhibition

in agonist binding (%)

IC50 of

GTP-c-S (nM)

0 26.6 —

0.5 35.2 620

2 87.8 93

10 91.3 92

a The values reported are obtained from Fig. 2. See Materials and

methods for other details.
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G-proteins [15,16], local anesthetics [17], covalent mod-

ifications of the disulfide and sulfhydryl groups [10], and

membrane cholesterol [18,19].

The hippocampal 5-HT1A receptor is negatively cou-

pled to adenylate cyclase through Gi-proteins [20]. Ago-

nist binding of the 5-HT1A receptor has previously been
shown to be modulated by guanine nucleotides [15,21].

Activation of a G-protein coupled receptor upon bind-

ing to its ligand sets the stage for a series of events in

the G-protein cycle [22] and Mg2+ is known to be one

of the crucial components at various steps of this cycle

[23,24]. In this report, we show that guanine nucleotide

sensitivity of agonist binding to hippocampal 5-HT1A

receptors is dependent on the concentration of Mg2+.
Our results show that agonist binding is relatively insen-

sitive to guanine nucleotides in the absence of Mg2+.

However, the antagonist binding is insensitive to guan-

ine nucleotides, even in the presence of Mg2+.
Materials and methods

Materials. EDTA, EGTA, iodoacetamide, MgCl2, p-MPPI, PMSF,

polyethylenimine, Tris, serotonin, sodium azide, and sucrose were

obtained from Sigma Chemical (St. Louis, MO, USA). GTP-c-S was

purchased from Roche Applied Science (Mannheim, Germany). [3H]8-

OH-DPAT (sp. activity 135.0 Ci/mmol) and [3H]p-MPPF (sp. activity

70.5 Ci/mmol) were purchased from DuPont New England Nuclear

(Boston, MA, USA). BCA reagent kit for protein estimation was ob-

tained from Pierce (Rockford, IL, USA). All other chemicals used were

of the highest purity available. GF/B glass microfiber filters were from

Whatman International (Kent, UK). Fresh bovine brains were ob-

tained from a local slaughterhouse within 10 min of death and the

hippocampal region was carefully dissected out. The hippocampi were

immediately flash-frozen in liquid nitrogen and stored at �70 �C until

further use.

Preparation of native hippocampal membranes. Native hippocampal

membranes were prepared as described earlier [9]. Bovine hippocampal

tissue (�100 g) was homogenized as 10% (w/v) with a polytron

homogenizer in buffer A (2.5 mM Tris, 0.32 M sucrose, 5 mM EDTA,

5 mM EGTA, 0.02% sodium azide, 0.24 mM PMSF, and 10 mM

iodoacetamide, pH 7.4). The homogenate was centrifuged at 900g for

10 min at 4 �C. The supernatant was filtered through four layers of

cheesecloth and the pellet was discarded. The supernatant was further

centrifuged at 50,000g for 20 min at 4 �C. The resulting pellet was

suspended in 10 vol buffer B (50 mM Tris, 1 mM EDTA, 0.24 mM

PMSF, and 10 mM iodoacetamide, pH 7.4) using a hand-held Dounce

homogenizer and centrifuged at 50,000g for 20 min at 4 �C. This

procedure was repeated until the supernatant was clear. The final pellet

(native membrane) was resuspended in a minimum volume of buffer C

(50 mM Tris, pH 7.4), homogenized using a hand-held Dounce

homogenizer, flash-frozen in liquid nitrogen, and stored at �70 �C
until further use. Protein concentration was determined using the BCA

reagent with bovine serum albumin as standard [25].

Radioligand binding assays. Receptor binding assays for agonist

and antagonist were carried out as described earlier [15] with a few

modifications in the presence of increasing concentrations of Mg2+.

Briefly, tubes in duplicate containing 1 mg total protein in a total

volume of 1 ml buffer D (50 mM Tris, 1 mM EDTA, pH 7.4) were used

with increasing concentrations of MgCl2. Tubes were incubated with

the radiolabeled agonist [3H]8-OH-DPAT (final concentration in the

assay tube being 0.29 nM) or antagonist [3H]p-MPPF (final concen-
tration in the assay tube being 0.5 nM) for 1 h at room temperature.

Non-specific binding was determined by performing the assay in the

presence of 10 lM unlabeled 5-HT in case of agonist binding or 10 lM
unlabeled p-MPPI in case of antagonist binding. The incubation was

terminated by rapid filtration under vacuum in a Millipore multiport

filtration apparatus through Whatman GF/B 2.5 cm diameter (1.0 lm
pore size) glass microfiber filters which were presoaked in 0.15% (w/v)

polyethylenimine for 3 h [26]. The filters were then washed three times

with 3 ml ice-cold water, dried, and the retained radioactivity was

measured in a Packard Tri-Carb 1500 scintillation counter using 5 ml

scintillation fluid.

Sensitivity to GTP-c-S. Ligand binding assays at a specified con-

centration of MgCl2 were performed in the presence of varying con-

centrations of GTP-c-S as described earlier [17] with a few

modifications. The concentrations of GTP-c-S leading to 50% inhibi-

tion of specific agonist binding (IC50) were calculated by non-linear

regression fitting of the data to a four parameter logistic function [27]:

B ¼ a
1þ ðx=IÞs þ b; ð1Þ

where B is the specific binding of the agonist normalized to control

binding (in the absence of GTP-c-S), x is the concentration of GTP-

c-S, a is the range (ymax � ymin) of the fitted curve on the ordinate

(y-axis), I is the IC50 concentration, b is the background of the fitted

curve (ymin), and s is the slope factor. The difference between inhibition

in agonist binding obtained with the highest and the lowest concentra-

tions of GTP-c-S at a specified concentration of MgCl2 is expressed as

the extent of inhibition in agonist binding and shown in Table 1.
Results and discussion

We monitored the ability of Mg2+ to modulate the

specific agonist binding to 5-HT1A receptors from bo-

vine hippocampus. Fig. 1 shows that the specific [3H]8-

OH-DPAT binding activity obtained in the absence of

MgCl2 is 17.5 fmol/mg protein while that obtained in

the presence of 10 mM MgCl2 is 53.1 fmol/mg protein.

Thus, there is �3-fold increase in the specific binding

activity when the concentration of MgCl2 is increased
up to 10 mM. This indicates that the specific binding

of the agonist [3H]8-OH-DPAT to 5-HT1A receptors is

dependent on the concentration of Mg2+ in the system.

G-protein coupled receptors (GPCRs) transduce sig-

nals from the extracellular milieu to the inside of the cell

via their interaction with heterotrimeric G-proteins lo-

cated on the cytoplasmic face of the cell. The G-protein



Fig. 1. Effect of increasing concentrations of MgCl2 on the specific

binding of the agonist [3H]8-OH-DPAT to 5-HT1A receptors from

bovine hippocampal membranes. The data points represent means ±

SE of duplicate points from three independent experiments. See

Materials and methods for other details.

Fig. 2. Effect of increasing concentrations of GTP-c-S on the specific

binding of the agonist [3H]8-OH-DPAT to 5-HT1A receptors from

bovine hippocampal membranes in the presence of 0 mM (h), 0.5 mM

(d), 2 mM (s), and 10 mM (j) MgCl2. Values are expressed as a

percentage of the specific binding obtained in the absence of GTP-c-S.
The curves are non-linear regression fits to the experimental data using

the four parameter logistic function [27]. The data points represent

means ± SE of duplicate points from three independent experiments.

See Materials and methods for other details.
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heterotrimer consists of the a subunit and a pair of bc
subunits. Ligand-bound receptors activate G-proteins

by facilitating GDP–GTP exchange on the a subunit

where the Ga subunit bound to GTP dissociates from

the bc pair, and both a and bc regulate their respective

downstream signaling components [22,28]. Hydrolysis

of GTP by Ga inactivates this process as the Ga reunites

with bc subunits to form the inactive heterotrimer. Due

to receptor–G-protein interaction, guanine nucleotides
are known to modulate ligand binding of G-protein cou-

pled receptors. This has been shown to be true in case of

the 5-HT1A receptor [15,29]. Thus, it has been previously

shown that the specific agonist 8-OH-DPAT and the

antagonist p-MPPF differentially discriminate G-protein

coupling of 5-HT1A receptors from bovine hippocam-

pus. In other words, while the agonist binds to only

those receptors that are coupled to G-proteins, the
antagonist binds to all receptors irrespective of their

state of G-protein coupling. Non-hydrolyzable ana-

logues such as GTP-c-S block the G-protein cycle and

thereby inhibit agonist binding to receptors (such as

the 5-HT1A receptor) [21]. Interestingly, Mg2+ has been

shown to be a crucial component in various steps of the

G-protein cycle such as the binding of GTP to the Ga
subunit and its hydrolysis [23,27].

In order to assess the status of receptor–G-protein

interaction in case of the 5-HT1A receptor at varying

concentrations of Mg2+, we monitored the specific ago-

nist binding of the receptor in the presence of GTP-c-S.
Fig. 2 shows the inhibition of agonist binding to 5-HT1A

receptors by GTP-c-S at different concentrations of

MgCl2. As seen from the figure, in the absence of

MgCl2, agonist binding is relatively insensitive to
GTP-c-S. As the concentration of Mg2+ is increased

up to 10 mM, the inhibition in agonist binding brought
about by GTP-c-S appears to improve significantly.
This is apparent from the extent of inhibition in agonist

binding caused by GTP-c-S at various concentrations of

Mg2+ (see Table 1). While the extent of inhibition is

modest in the absence of Mg2+ (26.6%), it increases con-

siderably (91.3%) in the presence of 10 mM Mg2+. There

is therefore �3.5-fold increase in the inhibition in ago-

nist binding in the presence of GTP-c-S when the con-

centration of Mg2+ is increased from 0 to 10 mM.
Table 1 also shows that the half maximal inhibition con-

centrations (IC50) for inhibition of specific [3H]8-OH-

DPAT binding by GTP-c-S decrease with increasing

concentrations of Mg2+. The IC50 value shows �7-fold

reduction when the concentration of Mg2+ is increased

from 0.5 to 10 mM. This indicates that much less con-

centration of GTP-c-S is required in the presence of

Mg2+ to cause the same extent of inhibition in specific
agonist binding. In other words, the presence of Mg2+

effectively makes the system more sensitive to the effect

of GTP-c-S which indicates increased coupling of the

receptor to G-proteins.

The presence of divalent metal ions such as Mg2+ is

known to inhibit antagonist p-MPPF binding to the 5-

HT1A receptor in a concentration-dependent manner

[14]. This somewhat complicates monitoring the guanine
nucleotide sensitivity of antagonist binding to 5-HT1A

receptors in the presence of Mg2+. Specific [3H]p-MPPF

binding has been reported to be inhibited to a relatively

low extent when the concentration of MgCl2 used is

2 mM [14]. Interestingly, our results (see Fig. 2) indicate

this concentration (2 mM) of MgCl2 to be sufficient to



Fig. 3. Effect of increasing concentrations of GTP-c-S on the specific

binding of the antagonist [3H]p-MPPF (d) to 5-HT1A receptors from

bovine hippocampal membranes in the presence of 2 mM MgCl2. The

sensitivity of specific agonist [3H]8-OH-DPAT binding (s) in the

presence of 2 mM MgCl2 with increasing concentrations of GTP-c-S is

shown for comparison. Values are expressed as a percentage of the

specific binding obtained in the absence of GTP-c-S. The curve

associated with agonist binding is a non-linear regression fit to the

experimental data using the 4 parameter logistic function [27]. The

data points represent means ± SE of duplicate points from three

independent experiments. See Materials and methods for other details.
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determine guanine nucleotide sensitivity of agonist bind-

ing. We therefore monitored the guanine nucleotide sen-

sitivity of specific antagonist binding in the presence of

2 mM Mg2+ using varying concentrations of GTP-c-S.
Fig. 3 shows that the specific antagonist binding remains

by and large invariant over a wide range of GTP-c-S
concentrations used in the presence of 2 mM Mg2+. It

has earlier been reported that agonist binding is sensitive

whereas antagonist binding is insensitive to guanine

nucleotides in case of several GPCRs [29]. Considering

the significance of Mg2+ in guanine nucleotide modula-

tion of ligand binding [23], we recommend that it is
important to include Mg2+ while determining guanine

nucleotide sensitivity of ligand (agonist or antagonist)

binding.

In addition to the role of Mg2+ in the G-protein cycle,

its presence is known to modulate both agonist and

antagonist binding of the 5-HT1A receptor [9,14,24]. In

fact, metal ion modulation of ligand binding has proved

to be a characteristic feature of other important G-pro-
tein coupled receptors such as the l-opioid receptor [30].

Our results highlight two novel aspects on the role of

Mg2+ in guanine nucleotide sensitivity of agonist bind-

ing to serotonin1A receptors: (i) specific agonist binding

is relatively insensitive to GTP-c-S in the absence of

Mg2+; and (ii) the ability of GTP-c-S to inhibit specific

agonist binding is dependent on the concentration of

Mg2+, as evident from the IC50 values of GTP-c-S and
the extent of inhibition in agonist binding caused by
GTP-c-S at various concentrations of Mg2+ (Table 1).

These results therefore provide new insight into the con-

centration dependence of Mg2+ in relation to guanine

nucleotide sensitivity. We show here that 2 mM Mg2+

is sufficient to determine the sensitivity of agonist bind-

ing to GTP-c-S. Based on these results, we propose an
optimum concentration of Mg2+ which could be used

in assays toward determining guanine nucleotide sensi-

tivity of ligand binding to GPCRs such as the 5-HT1A

receptor. These results are relevant in ongoing analyses

on the role of Mg2+ in the overall regulation of ligand

binding and receptor activity in the 5-HT1A receptor in

particular, and GPCRs in general, especially in the con-

text of guanine nucleotide sensitivity.
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