Differential discrimination of G-protein coupling of serotonin_{1A} receptors from bovine hippocampus by an agonist and an antagonist

K.G. Harikumar, Amitabha Chattopadhyay*

Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India

Received 20 July 1999

Abstract We have studied the effect of guanosine-5'-O-(3thiotriphosphate) (GTP- γ -S), a non-hydrolyzable analogue of GTP, on agonist and antagonist binding to bovine hippocampal 5-hydroxytryptamine (5-HT)_{1A} receptor in native membranes. Our results show that the specific binding of the agonist is inhibited with increasing concentrations of GTP- γ -S along with a reduction in binding affinity. In sharp contrast to this, antagonist binding to 5-HT_{1A} receptor shows no significant reduction and remains invariant over a large range of GTP- γ -S concentrations. The binding affinity of the antagonist also remains unaltered. This shows that the agonist and the antagonist differentially discriminate G-protein coupling of 5-HT_{1A} receptors from bovine hippocampus.

© 1999 Federation of European Biochemical Societies.

Key words: 5-Hydroxytryptamine_{1A} receptor; 8-Hydroxy-2-(di-*N*-propylamino)tetralin; 4-(2'-Methoxy)-phenyl-1-(2'-(*N*-2''-pyridinyl)-*p*-fluorobenzamido)ethyl-piperazine; G-protein coupling; Guanosine-5'-*O*-(3-thiotriphosphate); Bovine hippocampus

1. Introduction

Serotonin (5-hydroxytryptamine (5-HT)) is an intrinsically fluorescent [1], biogenic amine which acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous systems [2]. Serotonergic signalling appears to play a key role in the generation and modulation of various cognitive and behavioral functions including sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning [3–5]. Disruptions in serotonergic systems have been implicated in the etiology of mental disorders such as schizophrenia, migraine, depression, suicidal behavior, infantile autism, eating disorders and obsessive compulsive disorder [4,6,7].

Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups [8]. Serotonin receptors are members of a superfamily of seven transmembrane domain receptors [9] that couple to GTP binding regulatory proteins (G-proteins). Among the various types of serotonin receptors, the G-protein-coupled $5-HT_{1A}$ receptor subtype has been the most extensively studied for a number of reasons [10]. We have recently partially purified and solubilized the $5-HT_{1A}$ receptor from bovine hippocampus in a functionally active form [11] and have shown modulation of receptor binding by metal ions [10] and alcohols [12].

Since most seven transmembrane domain receptors are coupled to G-proteins [13], guanine nucleotides are known to regulate agonist binding. The 5-HT_{1A} receptor is negatively coupled to the adenylate cyclase system through G-proteins [14]. We report here that agonist binding to the 5-HT_{1A} receptor is sensitive to guanine nucleotides. However, antagonist binding to the 5-HT_{1A} receptor is found to be insensitive to guanine nucleotides. This could be due to the binding of the agonist only to those receptors which are coupled to G-proteins, while the antagonist binds to all receptors irrespective of their state of G-protein coupling.

2. Materials and methods

Fresh bovine brains were obtained from a local slaughterhouse within 10 min of death and the hippocampal region was carefully dissected out. The hippocampi were immediately flash frozen in liquid nitrogen and stored at -70°C until further use. Native membranes were prepared as described earlier [12]. Bovine hippocampal tissue $(\sim 120 \text{ g})$ was homogenized as 10% (w/v) in a polytron homogenizer in buffer A (2.5 mM tris-(hydroxymethyl)aminomethane (Tris), 0.32 M sucrose, 5 mM ethylenediaminetetraacetic acid (EDTA), 5 mM ethylene glycol *bis*(β-aminoethylether)-*N*, *N*, *N'*, *N'*-tetraacetic acid, 0.02% sodium azide, 0.24 mM phenylmethylsulfonyl fluoride (PMSF), 10 mM iodoacetamide, pH 7.4). The homogenate was centrifuged at $900 \times g$ for 10 min at 4°C. The supernatant was filtered through four layers of cheese cloth and the pellet was discarded. The supernatant was further centrifuged at $50\,000 \times g$ for 20 min at 4°C. The resulting pellet was suspended in 10 volumes of buffer B (50 mM Tris, 1 mM EDTA, 0.24 mM PMSF, 10 mM iodoacetamide, pH 7.4) using a hand-held Dounce homogenizer and centrifuged at $50\,000 \times g$ for 20 min at 4°C. This procedure was repeated until the supernatant was clear. The final pellet was resuspended in a minimum volume of 50 mM Tris buffer (pH 7.4), homogenized using a Dounce homogenizer, flash frozen in liquid nitrogen and stored at -70°C for radioligand binding assays.

Agonist binding assays were performed with varying concentrations of guanosine-5'-O-(3-thiotriphosphate) (GTP-γ-S) (Boehringer Mannheim, Germany) as follows. Tubes in triplicate containing 1 mg of total protein were incubated for 1 h at room temperature with 0.29 nM [³H]8-hydroxy-2-(di-N-propylamino)tetralin (OH-DPAT) (Du-Pont New England Nuclear, Boston, MA, USA: specific activity 127.0 Ci/mmol) in a total volume of 1 ml of buffer C (50 mM Tris, 1 mM EDTA, 10 mM MgCl₂, 5 mM MnCl₂, pH 7.4). Non-specific binding was determined by performing the assay in the presence of 10 µM unlabelled serotonin. The incubation was terminated by rapid filtration under vacuum in a Millipore multiport filtration apparatus through Whatman GF/B (1.0 µm pore size) 2.5 cm diameter glass microfiber filters (Whatman International, Kent, UK) which were pre-soaked in 0.3% polyethylenimine for 3 h [15]. The filters were then washed three times with 3 ml of ice-cold water, dried and the retained radioactivity was measured in a Packard Tri-Carb 1500 scin-

^{*}Corresponding author. Fax: (91) (40) 7171195.

E-mail: amit@ccmb.ap.nic.in

Abbreviations: EDTA, ethylenediaminetetraacetic acid; GTP- γ -S, guanosine-5'-O-(3-thiotriphosphate); 5-HT, 5-hydroxytryptamine; *p*-MPPF, 4-(2'-methoxy)-phenyl-1-(2'-(N-2''-pyridinyl)-*p*-fluorobenzamido)ethyl-piperazine; *p*-MPPI, 4-(2'-methoxy)-phenyl-1-(2'-(N-2''-pyridinyl)-*p*-iodobenzamido)ethyl-piperazine; OH-DPAT, 8-hydroxy-2-(di-*N*-propylamino)tetralin; PMSF, phenylmethylsulfonyl fluoride; Tris, *tris*-(hydroxymethyl)aminomethane

tillation counter using 5 ml of scintillation fluid. Antagonist binding assays in the presence of GTP- γ -S were performed as above using [³H]4-(2'-methoxy)-phenyl-1-(2'-(N-2''-pyridinyl)-p-fluorobenzamido)-ethyl-piperazine (p-MPPF) (DuPont New England Nuclear, Boston, MA, USA; specific activity 64.6 Ci/mmol) as the radioligand. The assay tubes contained 0.5 nM [³H]p-MPPF in a total volume of 1 ml of buffer D (50 mM Tris, 1 mM EDTA, pH 7.4). Non-specific binding was determined by performing the assay in the presence of 10 μ M unlabelled 4-(2'-methoxy)-phenyl-1-(2'-(N-2''-pyridinyl)-p-iodobenz-amido)ethyl-piperazine (p-MPPI) (a kind gift from Dr V. Bakthava-chalam, National Institute of Mental Health Chemical Synthesis Program, Research Biochemicals International). Protein concentration was determined using bicinchoninic acid reagent (Pierce, Rockford, IL, USA) [16].

Saturation binding assays were carried out using varying concentrations (0.1-7.5 nM) of radiolabelled agonist ([³H]OH-DPAT) or antagonist ([³H]p-MPPF) using native membranes containing 1 mg of total protein. Non-specific binding was measured in the presence of 10 µM unlabelled 5-HT (for agonist) or p-MPPI (for antagonist). Binding assays were carried out at room temperature as mentioned above in the presence of high (100 µM) and low (1 nM) concentrations of GTP- γ -S. Control experiments were carried out without GTP- γ -S. Binding data were analyzed as described earlier [10]. The concentration of bound ligand was calculated from the equation:

 $\mathrm{RL}^* = 10^{-9} \times B/(V \times \mathrm{SA} \times 2220) \mathrm{M}$

where B = bound radioactivity in desintegrations per minute (dpm) (i.e. total dpm – non-specific dpm), V is the assay volume in ml and SA is the specific activity of the radioligand. Scatchard plots (i.e. plots of RL*/L* versus RL*) were analyzed using Sigma-Plot (version 3.1) in an IBM PC. The dissociation constants (K_d) were obtained from the negative inverse of the slopes, determined by linear regression analysis of the plots (r = 0.92-0.99). The binding parameters shown in Table 2 were obtained by averaging the results of three independent experiments while saturation binding data shown in Figs. 3 and 4 are from representative experiments.

3. Results and discussion

Among the various types of serotonin receptors, the G-protein-coupled 5-HT_{1A} receptor subtype has been the most extensively studied. One of the major reasons for this is the early

Fig. 1. Effect of increasing concentrations of GTP- γ -S on the specific binding of the agonist [³H]OH-DPAT to the 5-HT_{1A} receptor from bovine hippocampal membranes. Values are expressed as a percentage of the specific binding obtained in the absence of GTP- γ -S. The data points are the means ±S.E.M. of triplicate points from three independent experiments. See Section 2 for other details.

Fig. 2. Effect of increasing concentrations of GTP- γ -S on the specific binding of the antagonist [³H]*p*-MPPF to the 5-HT_{1A} receptor from bovine hippocampal membranes. Values are expressed as a percentage of the specific binding obtained in the absence of GTP- γ -S. The data points are the means ± S.E.M. of triplicate points from four independent experiments. See Section 2 for other details.

availability of a highly selective agonist, OH-DPAT, that allows extensive biochemical, physiological and pharmacological characterization of the receptor [17]. Fig. 1 shows the inhibition of specific OH-DPAT binding to bovine hippocampal 5-HT_{1A} receptor in native membranes by GTP- γ -S, a nonhydrolyzable analogue of GTP, in a characteristic concentration-dependent manner [10]. This shows that the bovine hippocampal 5-HT_{1A} receptor is coupled to G-proteins and GTP- γ -S induces a transition of the receptor from a high affinity to a low affinity state. It has previously been reported that OH-DPAT binds to the high affinity binding sites of only that population of 5-HT_{1A} receptors which is coupled to G-proteins [18].

Although selective 5-HT_{1A} agonists (e.g. OH-DPAT) have been discovered more than a decade ago [17], the development of selective 5-HT_{1A} antagonists has been relatively slow and less successful. Recently, *p*-MPPI and *p*-MPPF have been introduced as selective antagonists for the 5-HT_{1A} receptor [19– 22]. These compounds bind specifically to 5-HT_{1A} receptor with a high affinity. Fig. 2 shows the effect of varying concentrations of GTP- γ -S on specific *p*-MPPF binding to the 5-HT_{1A} receptors in native membranes. In sharp contrast to what is observed with agonist binding, the antagonist binding shows no dependence on GTP- γ -S over a large range of concentrations (1 nM–100 μ M) used, i.e. the antagonist binding is independent of GTP- γ -S. Furthermore, there is a slight (10–

Table 1

Specific activities for [³H]OH-DPAT and [³H]p-MPPF binding to 5-HT_{1A} receptors from bovine hippocampal membranes^a

Ligand	Specific binding activity ^b (fmol/mg of protein)
[³ H]OH-DPAT (agonist)	76.2 ± 6.4
[³ H] <i>p</i> -MPPF (antagonist)	120.9 ± 11.3

^aFor details of binding assays, see Section 2.

^bData reported are mean ± S.E.M. of five independent experiments.

Fig. 3. Scatchard analysis of specific binding of [³H]OH-DPAT to the 5-HT_{1A} receptor from bovine hippocampal membranes in the presence of 100 μ M (\blacktriangle), 1 nM (\odot) GTP- γ -S and without (\bigcirc) GTP- γ -S. The concentration of [³H]OH-DPAT ranged from 0.1 to 7.5 nM. Data shown are from a representative experiment and each point is the mean of duplicate determinations. See Section 2 for other details.

20%) increase in binding in the presence of GTP- γ -S. Table 1 shows that the specific activity obtained using the agonist [³H]OH-DPAT is 76.2 fmol/mg protein while that obtained using the antagonist [³H]*p*-MPPF is 120.9 fmol/mg. There is thus a ~60% increase in specific activity when [³H]*p*-MPPF is used. This further suggests that while the agonist [³H]OH-DPAT binds to only that population of 5-HT_{1A} receptors that is coupled to G-proteins [18], the antagonist [³H]*p*-MPPF binds to both G-protein-coupled and free receptor giving rise to a higher specific activity. Comparing the specific activity values obtained with the agonist and the antagonist, therefore, can provide an idea of the extent of G-protein coupling of 5-HT_{1A} receptors in the system.

Figs. 3 and 4 show the Scatchard analysis of the specific binding of [³H]OH-DPAT and [³H]*p*-MPPF to the 5-HT_{1A} receptor in bovine hippocampal membranes in the presence of high and low concentrations of GTP- γ -S. The binding parameters under these conditions are summarized in Table 2. The binding affinity of [³H]OH-DPAT shows a considerable reduction at high concentrations (100 μ M) of GTP- γ -S, confirming that the receptor is in a low affinity state at high GTP- γ -S concentrations. This is in agreement with Fig. 1 which shows that at high GTP- γ -S concentrations, the low affinity form of the receptor predominates. Table 2 also shows that the binding affinity of [³H]*p*-MPPF in the presence of 100 μ M GTP- γ -S shows no significant variation. This supports our

Table 2

Binding affinity of [³H]OH-DPAT and [³H]p-MPPF to 5-HT_{1A} receptors from bovine hippocampal membranes^a

Condition	Ligand	$K_{\rm d}~({\rm nM})$	
Native membrane	[³ H]OH-DPAT	1.68 ± 0.16	
100 μM GTP-γ-S	^{[3} H]OH-DPAT	8.54 ± 0.83	
1 nM GTP-γ-S	³ H]OH-DPAT	1.24 ± 0.07	
Native membrane	$[^{3}H]p-MPPF$	1.45 ± 0.18	
100 μM GTP-γ-S	$\tilde{[}^{3}H\tilde{]}p$ -MPPF	1.87 ± 0.31	
1 nM GTP-γ-S	[³ H]p-MPPF	2.07 ± 0.19	

^aThe binding parameters shown in this table represent the mean \pm S.E.M. of duplicate points from three independent experiments while saturation binding data shown in Figs. 3 and 4 are from representative experiments. See Section 2 for other details.

Fig. 4. Scatchard analysis of specific binding of $[{}^{3}H]p$ -MPPF to the 5-HT_{1A} receptor from bovine hippocampal membranes in the presence of 100 μ M (\blacktriangle), 1 nM (\odot) GTP- γ -S and without (\bigcirc) GTP- γ -S. The concentration of $[{}^{3}H]p$ -MPPF ranged from 0.1 to 7.5 nM. Data shown are from a representative experiment and each point is the mean of duplicate determinations. See Section 2 for other details.

previous conclusion that antagonist binding is independent of $\text{GTP-}\gamma$ -S (see Fig. 2).

In summary, we show here that the specific agonist OH-DPAT and the antagonist MPPF bind to 5-HT_{1A} receptors from bovine hippocampal membranes and exhibit different sensitivities to guanine nucleotides. This difference can be potentially exploited to gain a better understanding of signal transduction processes triggered by the 5-HT_{1A} receptor. These results are relevant to ongoing analyses of the overall modulation of G-protein coupling in seven transmembrane domain receptors.

Acknowledgements: This work was supported by a Grant (BT/R and D/9/5/93) to A.C. from the Department of Biotechnology, Government of India. K.G.H. thanks the Department of Biotechnology, Government of India, for the award of a postdoctoral fellowship. We thank S. Bala Tripura Sundari and K. Shanti for helpful discussions and Drs S. Harinarayana Rao, S. Rajanna and Satinder Rawat for help with the tissue collection.

References

- Chattopadhyay, A., Rukmini, R. and Mukherjee, S. (1996) Biophys. J. 71, 1952–1960.
- [2] Jacobs, B.L. and Azmitia, E.C. (1992) Physiol. Rev. 72, 165–229.
 [3] Artigas, F., Romero, L., De Montigny, C. and Blier, P. (1996)
- Trends Neurosci. 19, 378–383.
- [4] Ramboz, S., Oosting, R., Amara, D.A., Kung, H.F., Blier, P., Mendelsohn, M., Mann, J.J., Brunner, D. and Hen, R. (1998) Proc. Natl. Acad. Sci. USA 95, 14476–14481.
- [5] Rocha, B.A., Scearce-Levie, K., Lucas, J.J., Hiroi, N., Castanon, N., Crabbe, J.C., Nestler, E.J. and Hen, R. (1998) Nature 393, 175–178.
- [6] Heisler, L.K., Chu, H.-M., Brennan, T.J., Danao, J.A., Bajwa, P., Parsons, L.H. and Tecott, L.H. (1998) Proc. Natl. Acad. Sci. USA 95, 15049–15054.
- [7] Parks, C.L., Robinson, P.S., Sibille, E., Shenk, T. and Toth, M. (1998) Proc. Natl. Acad. Sci. USA 95, 10734–10739.
- [8] Peroutka, S.J. (1993) J. Neurochem. 60, 408-416.
- [9] Strader, C.D., Fong, T.M., Graziano, M.P. and Tota, M.R. (1995) FASEB J. 9, 745–754.
- [10] Harikumar, K.G. and Chattopadhyay, A. (1998) Cell. Mol. Neurobiol. 18, 535–553.
- [11] Chattopadhyay, A. and Harikumar, K.G. (1996) FEBS Lett. 391, 199–202.

- [12] Harikumar, K.G. and Chattopadhyay, A. (1998) FEBS Lett. 438, 96-100.
- [13] Clapham, D.E. (1996) Nature 379, 297-299.
- [14] Emerit, M.B., El Mestikawy, S., Gozlan, H., Rouot, B. and Hamon, M. (1990) Biochem. Pharmacol. 39, 7-18.
- [15] Bruns, R.F., Lawson-Wendling, K. and Pugsley, T.A. (1983) Anal. Biochem. 132, 74-81.
- [16] Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Anal. Biochem. 150, 76-85.
- [17] Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. and Hamon, M. (1983) Nature 305, 140-142.
- [18] Sundaram, H., Newman-Tancredi, A. and Strange, P.G. (1993) Biochem. Pharmacol. 45, 1003-1009.
- [19] Kung, M.-P., Frederick, D., Mu, M., Zhuang, Z.-P. and Kung, H.F. (1995) J. Pharmacol. Exp. Ther. 272, 429-437.
- [20] Kung, H.F., Kung, M.-P., Clarke, W., Maayani, S. and Zhuang, Z.-P. (1994) Life Sci. 55, 1459–1462. [21] Kung, M.-P., Zhuang, Z.-P., Frederick, D. and Kung, H.F.
- (1994) Synapse 18, 359-366.
- [22] Thielen, R.J. and Frazer, A. (1995) Life Sci. 56, 163-168.